期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Prolonged intermittent theta burst stimulation restores the balance between A_(2A)R-and A_(1)R-mediated adenosine signaling in the 6-hydroxidopamine model of Parkinson's disease
1
作者 Milica Zeljkovic Jovanovic Jelena Stanojevic +4 位作者 Ivana Stevanovic Milica Ninkovic Tihomir V.Ilic Nadezda Nedeljkovic Milorad Dragic 《Neural Regeneration Research》 SCIE CAS 2025年第7期2053-2067,共15页
An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease prog... An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease progression,demonstrating the need for novel approaches in PD.Repetitive transcranial magnetic stimulation is a non-invasive approach that has been shown to improve motor and non-motor symptoms of Parkinson's disease.However,the underlying mechanisms of the beneficial effects of repetitive transcranial magnetic stimulation remain unknown.The purpose of this study is to investigate the extent to which the beneficial effects of prolonged intermittent theta burst stimulation in the 6-hydroxydopamine model of experimental parkinsonism are based on modulation of adenosine-mediated signaling.Animals with unilateral 6-hydroxydopamine lesions underwent intermittent theta burst stimulation for 3 weeks and were tested for motor skills using the Rotarod test.Immunoblot,quantitative reverse transcription polymerase chain reaction,immunohistochemistry,and biochemical analysis of components of adenosine-mediated signaling were performed on the synaptosomal fraction of the lesioned caudate putamen.Prolonged intermittent theta burst stimulation improved motor symptoms in 6-hydroxydopamine-lesioned animals.A 6-hydroxydopamine lesion resulted in progressive loss of dopaminergic neurons in the caudate putamen.Treatment with intermittent theta burst stimulation began 7 days after the lesion,coinciding with the onset of motor symptoms.After treatment with prolonged intermittent theta burst stimulation,complete motor recovery was observed.This improvement was accompanied by downregulation of the e N/CD73-A_(2A)R pathway and a return to physiological levels of A_(1)R-adenosine deaminase 1 after 3 weeks of intermittent theta burst stimulation.Our results demonstrated that 6-hydroxydopamine-induced degeneration reduced the expression of A_(1)R and elevated the expression of A_(2A)R.Intermittent theta burst stimulation reversed these effects by restoring the abundances of A_(1)R and A_(2A)R to control levels.The shift in ARs expression likely restored the balance between dopamine-adenosine signaling,ultimately leading to the recovery of motor control. 展开更多
关键词 A_(1)R A_(2A)R adenosine receptors ADENOSINE ecto-5′-nucleotidase intermittent theta burst stimulation non-invasive brain stimulation Parkinson's disease purinergic signalling
下载PDF
Intermittent Theta Burst Stimulation Attenuates Cognitive Deficits and Alzheimer’s Disease-Type Pathologies via ISCA1-Mediated Mitochondrial Modulation in APP/PS1 Mice
2
作者 Yang Zhu Hao Huang +5 位作者 Zhi Chen Yong Tao Ling-Yi Liao Shi-Hao Gao Yan-Jiang Wang Chang-Yue Gao 《Neuroscience Bulletin》 SCIE CAS CSCD 2024年第2期182-200,共19页
Intermittent theta burst stimulation(iTBS),a time-saving and cost-effective repetitive transcranial magnetic stimulation regime,has been shown to improve cognition in patients with Alzheimer’s disease(AD).However,the... Intermittent theta burst stimulation(iTBS),a time-saving and cost-effective repetitive transcranial magnetic stimulation regime,has been shown to improve cognition in patients with Alzheimer’s disease(AD).However,the specific mechanism underlying iTBS-induced cognitive enhancement remains unknown.Previous studies suggested that mitochondrial functions are modulated by magnetic stimulation.Here,we showed that iTBS upregulates the expression of iron-sulfur cluster assembly 1(ISCA1,an essential regulatory factor for mitochondrial respiration)in the brain of APP/PS1 mice.In vivo and in vitro studies revealed that iTBS modulates mitochondrial iron-sulfur cluster assembly to facilitate mitochondrial respiration and function,which is required for ISCA1.Moreover,iTBS rescues cognitive decline and attenuates AD-type pathologies in APP/PS1 mice.The present study uncovers a novel mechanism by which iTBS modulates mitochondrial respiration and function via ISCA1-mediated iron-sulfur cluster assembly to alleviate cognitive impairments and pathologies in AD.We provide the mechanistic target of iTBS that warrants its therapeutic potential for AD patients. 展开更多
关键词 intermittent theta burst stimulation Alzheimer’s disease Iron-sulfur cluster assembly 1 Mitochondrial dysfunction NEURODEGENERATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部