LiNi_(x)Co_(y)Al_(z)O_(2)(NCA)cathode materials are drawing widespread attention,but the huge gap between the ideal and present cyclic stability still hinders their further commercial application,especially for the Ni...LiNi_(x)Co_(y)Al_(z)O_(2)(NCA)cathode materials are drawing widespread attention,but the huge gap between the ideal and present cyclic stability still hinders their further commercial application,especially for the Ni-rich LiNi_(x)Co_(y)Al_(z)O_(2)(x>0.8,x+y+z=1)cathode material,which is owing to the structural degradation and particles'intrinsic fracture.To tackle the problems,Li_(0.5)La_(2)Al_(0.5)O_(4)in situ coated and Mn compensating doped multilayer LiNi_(0.82)Co_(0.14)Al_(0.04)O_(2)was prepared.XRD refinement indicates that La-Mn co-modifying could realize appropriate Li/Ni disorder degree.Calculated results and in situ XRD patterns reveal that the LLAO coating layer could effectively restrain crack in secondary particles benefited from the suppressed internal strain.AFM further improves as NCA-LM2 has superior mechanical property.The SEM,TEM,XPS tests indicate that the cycled cathode with LLAO-Mn modification displays a more complete morphology and less side reaction with electrolyte.DEMS was used to further investigate cathode-electrolyte interface which was reflected by gas evolution.NCA-LM2 releases less CO_(2)than NCA-P indexing on a more stable surface.The modified material presents outstanding capacity retention of 96.2%after 100 cycles in the voltage range of 3.0-4.4 V at 1C,13%higher than that of the pristine and 80.8%at 1 C after 300 cycles.This excellent electrochemical performance could be attributed to the fact that the high chemically stable coating layer of Li_(0.5)La_(2)Al_(0.5)O_(4)(LLAO)could enhance the interface and the Mn doping layer could suppress the influence of the lattice mismatch and distortion.We believe that it can be a useful strategy for the modification of Ni-rich cathode material and other advanced functional material.展开更多
Styrene-acrylate latex with high glass transition temperature (T), low minimum film forming temperature(MFT) and good stability was prepared via core-shell emulsion polymerization. With semicontinuous process, hig...Styrene-acrylate latex with high glass transition temperature (T), low minimum film forming temperature(MFT) and good stability was prepared via core-shell emulsion polymerization. With semicontinuous process, high conversion rate of monomer and low gel rate were achieved. The weight ratio of core monomer to shell monomer was approximately 1.35. It is found that many factors such as emulsifiers, initiators, reaction temperature, pH value and polymerization technology have influences on the permormance of styrene-acrylate latex. The prepared latex was characterized by TEM and FTIR. The obtained latex with T of 20.57 ℃, MFT or5.0 ℃, and good stability, had good stability of film forming.展开更多
The principle, formula and determination of internal stresses of metal multilayer composite coatings by means of the bending strip method were studied. Using this method, internal stresses of ion-plated metal multilay...The principle, formula and determination of internal stresses of metal multilayer composite coatings by means of the bending strip method were studied. Using this method, internal stresses of ion-plated metal multilayer composite coatings and thick monolayer coating of aluminium bronze, stainless steel and nickel-iron alloy were determined. The reason of decrement in internal stresses of multilayer composite coatings was discussed.展开更多
This paper introduces a new technology of using ceramic coating on piston rings of an internal combustion engine, and the comparison of mechanical efficiency and performances of an actual engine before and after the a...This paper introduces a new technology of using ceramic coating on piston rings of an internal combustion engine, and the comparison of mechanical efficiency and performances of an actual engine before and after the application of ceramic coating on the piston rings. The experimental results show that the mechanical efficiency and power output are enhanced by 4% and 2.6%, respectively, with fuel consumption reduced by (2.9%.) Further studies on coating processing and coating materials as well as the reliability and durability will be of great significance in the application and popularization of the new technology.展开更多
Coverage layer coated in the internal wall of pipeline enables the friction drag to be reduced, the throughput and the gas transmission efficiency to be increased, the frequency of pigging and the number of the interm...Coverage layer coated in the internal wall of pipeline enables the friction drag to be reduced, the throughput and the gas transmission efficiency to be increased, the frequency of pigging and the number of the intermediate compressor station to be reduced, and the power consumption of the compressor to be decreased etc. The drag reduction is a high advanced scientific technique with outstanding economical benefit. The study and application of internal coating technique for drag reduction of 4000 km trunk pipeline in West East gas transmission pipeline (WEGTP) project are described, in which the main points are the drag reduction principle, coating process and the indoor study of this technique with own decided knowledge property right at home.展开更多
An anti-corona method for the power transmission lines is proposed in this paper. The RTV coating is used as the anti-corona coating, which is spaying onto the surface of the wearing conductor. The corona characterist...An anti-corona method for the power transmission lines is proposed in this paper. The RTV coating is used as the anti-corona coating, which is spaying onto the surface of the wearing conductor. The corona characteristic of the conductor test was done, and the corona onset voltage increase after the spraying of the anti-corona layer, the corona loss in the same voltage decrease, which could prove the excellent effect of improving the corona characteristic of the conductor. This anti-corona method will have great prospect, based on the background of the construction of UHV power transmission lines.展开更多
The cell performance and temperature gradient of a tubular solid oxide fuel cell with indirect internal reformer (IIR-SOFC) fuelled by natural gas, containing a typical catalytic packed-bed reformer, a catalytic coa...The cell performance and temperature gradient of a tubular solid oxide fuel cell with indirect internal reformer (IIR-SOFC) fuelled by natural gas, containing a typical catalytic packed-bed reformer, a catalytic coated wall reformer, a catalytic annular reformer, and a novel catalytic annular-coated wall reformer were investigated with an aim to determine the most efficient internal reformer system. Among the four reformer designs, IIR-SOFC containing an annular-coated wall reformer exhibited the highest performance in terms of cell power density (0.67 W.cm 2) and electrical efficiency (68%) with an acceptable temperature gradient and a moderate pressure drop across the reformer (3.53 × 10 5 kPa). IIR-SOFC with an annular-coated wall reformer was then studied over a range of operating conditions: inlet fuel temperature, operating pressure, steam to carbon (S : C) ratio, gas flow pattern (co-flow and counter-flow pattern), and natural gas compositions. The simulation results showed that the temperature gradient across the reformer could not be decreased using a lower fuel inlet temperature (1223 K-1173 K) and both the power density and electrical efficiency of the cell also decreased by lowering fuel inlet temperature. Operating in higher pressure mode (1-10 bar) improved the temperature gradient and cell performance. Increasing the S : C ratio from 2 : 1 to 4:1 could decrease the temperature drop across the reformer but also decrease the cell performance. The average temperature gradient was higher and smoother in IIR-SOFC under a co-flow pattern than that under a counter-flow pattern, leading to lower overpotential and higher cell performance. Natural gas compositions significantly affected the cell performance and temperature gradient. Natural gas containing lower methane content provided smoother temperature gradient in the system but showed lower power density and electrical efficiency.展开更多
Scratch test and friction test were performed to evaluate the internal and external interface behaviors of TiAISiN coating, respectively. The critical compressive and shearing stress of coating failure during scratch ...Scratch test and friction test were performed to evaluate the internal and external interface behaviors of TiAISiN coating, respectively. The critical compressive and shearing stress of coating failure during scratch test were calculated and the values are 30.84 MPa and 4.98 MPa respectively. The average friction coefficients of TiAISiN coat- ing against 2Crl2Ni4Mo3VNbN steel are 0.70 (sliding speed 50 m/rain), 0.63 (sliding speed 100 m/min), and 0.81 (sliding speed 150 m/min). The elements diffusion was analyzed by EDS. A1 and Si element of coating material dif- fuse to the steel disc, except Ti element. The oxidation decreases with the increase of sliding speed, but the adhesion increases with the increase of sliding speed. More A1 element diffuses to the steel disc at the high sliding speed, but the diffusion of Si element keeps almost constant at dlfferent sliding speeds.展开更多
Based on the optimization of dye-sensitized solar cell (DSC) photoelectrodes pretreated with different methods such as electrodeposition,spin-coating and TiCl_(4) pretreatment,theoretical calculations are carried out ...Based on the optimization of dye-sensitized solar cell (DSC) photoelectrodes pretreated with different methods such as electrodeposition,spin-coating and TiCl_(4) pretreatment,theoretical calculations are carried out to interpret the internal electric mechanism.The numerical values,including the series resistance R_(s) and the shunt resistance R_(sh) corresponding to the equivalent circuit model,are well evaluated and confirm that the DSC has good performance with a high R_(sh) and a low R_(s) due to good electrical contact and a low charge recombination after the different modifications.The Ⅰ-Ⅴ curves are fifted in the case without series resistance,and account for the role of R_(s) in the output characteristics.It is found that when R_(s) tends to the infinitesimal,the short-circuit current Isc,the open-circuit voltage V_(oc) and the fill factor can be improved by almost 0.8-1.4,2.9 and 2.1-6.8%,respectively.展开更多
Metal nano layer coating for increasing the sensitivity of spectroscopic measurements is proposed and experimentally demonstrated in this paper. The metal nano layer will attract the micro-poisons from any measured aq...Metal nano layer coating for increasing the sensitivity of spectroscopic measurements is proposed and experimentally demonstrated in this paper. The metal nano layer will attract the micro-poisons from any measured aqueous sample increasing the concentration of the micro-poison in the vicinity of the surface and significantly improves the sensitivity of the spectroscopic measurement. The demonstration was carried out using Fourier Transform Infra-Red (FTIR) operating in the MIR 400 cm-1 - 4000 cm-1 and 5 nm Gold layer which was grown on silicon oxide substrate. In the experimental demonstration Malathion organophosphate pesticide was used as micro-poison. The spectroscopic measurement proves that Malathion was attracted to the metal nano layer. Furthermore, the absorption lines of Malathion were detected and recognized. This proof of principle can be applied to any Internal Reflection Elements (IRE) and it can be used to purify any aqueous solutions and atmosphere from micro-poisons which will be attracted to the metal Nano layer.展开更多
Kidney bean seed was dried in a laboratory scale fixed bed. The effect of seed coat on drying dynamic characteristics and the changes of seed coat structure were investigated. A mathematical model was established to s...Kidney bean seed was dried in a laboratory scale fixed bed. The effect of seed coat on drying dynamic characteristics and the changes of seed coat structure were investigated. A mathematical model was established to simulate the drying process and determine the moisture diffusivity. Numerical results agree well with the experimental data. The average moisture diffusivity of the seed with separated coat is 1.67 times larger than that of the seed with coat, and the moisture diffusivity of seed cotyledon is 3.2 times larger than that of the seed coat. It is proved that the seed coat is the most main resistance of mass transfer and is also one of the key points of the optimization of heat and mass transfer for seed drying.展开更多
Laser 3D printing,also known as laser additive manufacturing(LAM),is favored for its ability to form bulk metallic glass(BMG)and its composite materials(BMGcs)with freeform geometries.In this work,two different kinds ...Laser 3D printing,also known as laser additive manufacturing(LAM),is favored for its ability to form bulk metallic glass(BMG)and its composite materials(BMGcs)with freeform geometries.In this work,two different kinds of Fe_(41)Co_(7)Cr_(15)Mo_(14)C_(15)B_(6)Y_(2)amorphous coatings(A and B)were prepared by using LAM technology under air-and water-cooled conditions,respectively;meanwhile,to reduce the cracks generated due to the residual thermal stresses,coating C obtained by air-sweep annealing of B with a low energy-density laser.The morphology and amorphous content and microstructure of the coatings were investigated,the results show many cracks in coating B deposited under water-cooled conditions,and its microstructure shows an amorphous-crystal-nanocrystalline mixed structure.Cracking was suppressed in coating C,obtained by air-sweep annealing based on coating B,but the amorphous content was reduced from 32.6 to 13.4%.And the hardness and corrosion resistance of the coating will increase with the increase in the amorphous content.Finally,the internal friction behavior of a BMGcs was prepared on the basis of the process of sample C is compared with that of as-cast amorphous alloys.The results show that the low temperature internal friction behavior of BMGcs is affected by the defects produced during printing,and the high temperature internal friction behavior is affected by the precipitated hard phase.展开更多
Solid oral controlled release formulations feature numerous clinical advantages for drug candidates with adequate solubility and dissolution rate.However,most new chemical entities exhibit poor water solubility,and he...Solid oral controlled release formulations feature numerous clinical advantages for drug candidates with adequate solubility and dissolution rate.However,most new chemical entities exhibit poor water solubility,and hence are exempt from such benefits.Although combining drug amorphization with controlled release formulation is promising to elevate drug solubility,like other supersaturating systems,the problem of drug recrystallization has yet to be resolved,particularly within the dosage form.Here,we explored the potential of an emerging,non-leachable terpolymer nanoparticle(TPN)pore former as an internal recrystallization inhibitor within controlled release amorphous solid dispersion(CRASD)beads comprising a poorly soluble drug(celecoxib)reservoir and insoluble polymer(ethylcellulose)membrane.Compared to conventional pore former,polyvinylpyrrolidone(PVP),TPN-containing membranes exhibited superior structural integrity,less crystal formation at the CRASD bead surface,and greater extent of celecoxib release.All-atom molecular dynamics analyses revealed that in the presence of TPN,intra-molecular bonding,crystal formation tendency,diffusion coefficient,and molecular flexibility of celecoxib were reduced,while intermolecular H-bonding was increased as compared to PVP.This work suggests that selection of a pore former that promotes prolonged molecular separation within a nanoporous controlled release membrane structure may serve as an effective strategy to enhance amorphicity preservation inside CRASD.展开更多
基金supported in part by the High Performance Computing Center of Central South Universitythe financial support from the Government of Chongzuo,Guangxi Zhuang Autonomous Region(Fund No.FA2020011FA20210713)
文摘LiNi_(x)Co_(y)Al_(z)O_(2)(NCA)cathode materials are drawing widespread attention,but the huge gap between the ideal and present cyclic stability still hinders their further commercial application,especially for the Ni-rich LiNi_(x)Co_(y)Al_(z)O_(2)(x>0.8,x+y+z=1)cathode material,which is owing to the structural degradation and particles'intrinsic fracture.To tackle the problems,Li_(0.5)La_(2)Al_(0.5)O_(4)in situ coated and Mn compensating doped multilayer LiNi_(0.82)Co_(0.14)Al_(0.04)O_(2)was prepared.XRD refinement indicates that La-Mn co-modifying could realize appropriate Li/Ni disorder degree.Calculated results and in situ XRD patterns reveal that the LLAO coating layer could effectively restrain crack in secondary particles benefited from the suppressed internal strain.AFM further improves as NCA-LM2 has superior mechanical property.The SEM,TEM,XPS tests indicate that the cycled cathode with LLAO-Mn modification displays a more complete morphology and less side reaction with electrolyte.DEMS was used to further investigate cathode-electrolyte interface which was reflected by gas evolution.NCA-LM2 releases less CO_(2)than NCA-P indexing on a more stable surface.The modified material presents outstanding capacity retention of 96.2%after 100 cycles in the voltage range of 3.0-4.4 V at 1C,13%higher than that of the pristine and 80.8%at 1 C after 300 cycles.This excellent electrochemical performance could be attributed to the fact that the high chemically stable coating layer of Li_(0.5)La_(2)Al_(0.5)O_(4)(LLAO)could enhance the interface and the Mn doping layer could suppress the influence of the lattice mismatch and distortion.We believe that it can be a useful strategy for the modification of Ni-rich cathode material and other advanced functional material.
文摘Styrene-acrylate latex with high glass transition temperature (T), low minimum film forming temperature(MFT) and good stability was prepared via core-shell emulsion polymerization. With semicontinuous process, high conversion rate of monomer and low gel rate were achieved. The weight ratio of core monomer to shell monomer was approximately 1.35. It is found that many factors such as emulsifiers, initiators, reaction temperature, pH value and polymerization technology have influences on the permormance of styrene-acrylate latex. The prepared latex was characterized by TEM and FTIR. The obtained latex with T of 20.57 ℃, MFT or5.0 ℃, and good stability, had good stability of film forming.
文摘The principle, formula and determination of internal stresses of metal multilayer composite coatings by means of the bending strip method were studied. Using this method, internal stresses of ion-plated metal multilayer composite coatings and thick monolayer coating of aluminium bronze, stainless steel and nickel-iron alloy were determined. The reason of decrement in internal stresses of multilayer composite coatings was discussed.
文摘This paper introduces a new technology of using ceramic coating on piston rings of an internal combustion engine, and the comparison of mechanical efficiency and performances of an actual engine before and after the application of ceramic coating on the piston rings. The experimental results show that the mechanical efficiency and power output are enhanced by 4% and 2.6%, respectively, with fuel consumption reduced by (2.9%.) Further studies on coating processing and coating materials as well as the reliability and durability will be of great significance in the application and popularization of the new technology.
文摘Coverage layer coated in the internal wall of pipeline enables the friction drag to be reduced, the throughput and the gas transmission efficiency to be increased, the frequency of pigging and the number of the intermediate compressor station to be reduced, and the power consumption of the compressor to be decreased etc. The drag reduction is a high advanced scientific technique with outstanding economical benefit. The study and application of internal coating technique for drag reduction of 4000 km trunk pipeline in West East gas transmission pipeline (WEGTP) project are described, in which the main points are the drag reduction principle, coating process and the indoor study of this technique with own decided knowledge property right at home.
文摘An anti-corona method for the power transmission lines is proposed in this paper. The RTV coating is used as the anti-corona coating, which is spaying onto the surface of the wearing conductor. The corona characteristic of the conductor test was done, and the corona onset voltage increase after the spraying of the anti-corona layer, the corona loss in the same voltage decrease, which could prove the excellent effect of improving the corona characteristic of the conductor. This anti-corona method will have great prospect, based on the background of the construction of UHV power transmission lines.
基金supported by the Thailand Research Fund(TRG 5680051)
文摘The cell performance and temperature gradient of a tubular solid oxide fuel cell with indirect internal reformer (IIR-SOFC) fuelled by natural gas, containing a typical catalytic packed-bed reformer, a catalytic coated wall reformer, a catalytic annular reformer, and a novel catalytic annular-coated wall reformer were investigated with an aim to determine the most efficient internal reformer system. Among the four reformer designs, IIR-SOFC containing an annular-coated wall reformer exhibited the highest performance in terms of cell power density (0.67 W.cm 2) and electrical efficiency (68%) with an acceptable temperature gradient and a moderate pressure drop across the reformer (3.53 × 10 5 kPa). IIR-SOFC with an annular-coated wall reformer was then studied over a range of operating conditions: inlet fuel temperature, operating pressure, steam to carbon (S : C) ratio, gas flow pattern (co-flow and counter-flow pattern), and natural gas compositions. The simulation results showed that the temperature gradient across the reformer could not be decreased using a lower fuel inlet temperature (1223 K-1173 K) and both the power density and electrical efficiency of the cell also decreased by lowering fuel inlet temperature. Operating in higher pressure mode (1-10 bar) improved the temperature gradient and cell performance. Increasing the S : C ratio from 2 : 1 to 4:1 could decrease the temperature drop across the reformer but also decrease the cell performance. The average temperature gradient was higher and smoother in IIR-SOFC under a co-flow pattern than that under a counter-flow pattern, leading to lower overpotential and higher cell performance. Natural gas compositions significantly affected the cell performance and temperature gradient. Natural gas containing lower methane content provided smoother temperature gradient in the system but showed lower power density and electrical efficiency.
基金Supported by China Postdoctoral Science Foundation(No. 20110490380 and No. 20110490383)Dongfang Turbine Co, Ltd (No. 2011GZ011)State Key Laboratory of Tribology, Tsinghua University (No. SKLT10A01)
文摘Scratch test and friction test were performed to evaluate the internal and external interface behaviors of TiAISiN coating, respectively. The critical compressive and shearing stress of coating failure during scratch test were calculated and the values are 30.84 MPa and 4.98 MPa respectively. The average friction coefficients of TiAISiN coat- ing against 2Crl2Ni4Mo3VNbN steel are 0.70 (sliding speed 50 m/rain), 0.63 (sliding speed 100 m/min), and 0.81 (sliding speed 150 m/min). The elements diffusion was analyzed by EDS. A1 and Si element of coating material dif- fuse to the steel disc, except Ti element. The oxidation decreases with the increase of sliding speed, but the adhesion increases with the increase of sliding speed. More A1 element diffuses to the steel disc at the high sliding speed, but the diffusion of Si element keeps almost constant at dlfferent sliding speeds.
基金Supported by the National Basic Research Program of China under Grant No 2011CBA00700the National Natural Science Foundation of China under Grant Nos 21173228 and 11104150+1 种基金the Foundation of Key Laboratory of Novel Thin Film Solar Cells,Chinese Academy of Sciences under Grant No KF201106the Major Program of Natural Science Basic Research of Institution of Higher Education of Jiangsu Province under Grant Nos 08KJA510002 and 10KJA140043.
文摘Based on the optimization of dye-sensitized solar cell (DSC) photoelectrodes pretreated with different methods such as electrodeposition,spin-coating and TiCl_(4) pretreatment,theoretical calculations are carried out to interpret the internal electric mechanism.The numerical values,including the series resistance R_(s) and the shunt resistance R_(sh) corresponding to the equivalent circuit model,are well evaluated and confirm that the DSC has good performance with a high R_(sh) and a low R_(s) due to good electrical contact and a low charge recombination after the different modifications.The Ⅰ-Ⅴ curves are fifted in the case without series resistance,and account for the role of R_(s) in the output characteristics.It is found that when R_(s) tends to the infinitesimal,the short-circuit current Isc,the open-circuit voltage V_(oc) and the fill factor can be improved by almost 0.8-1.4,2.9 and 2.1-6.8%,respectively.
文摘Metal nano layer coating for increasing the sensitivity of spectroscopic measurements is proposed and experimentally demonstrated in this paper. The metal nano layer will attract the micro-poisons from any measured aqueous sample increasing the concentration of the micro-poison in the vicinity of the surface and significantly improves the sensitivity of the spectroscopic measurement. The demonstration was carried out using Fourier Transform Infra-Red (FTIR) operating in the MIR 400 cm-1 - 4000 cm-1 and 5 nm Gold layer which was grown on silicon oxide substrate. In the experimental demonstration Malathion organophosphate pesticide was used as micro-poison. The spectroscopic measurement proves that Malathion was attracted to the metal nano layer. Furthermore, the absorption lines of Malathion were detected and recognized. This proof of principle can be applied to any Internal Reflection Elements (IRE) and it can be used to purify any aqueous solutions and atmosphere from micro-poisons which will be attracted to the metal Nano layer.
文摘Kidney bean seed was dried in a laboratory scale fixed bed. The effect of seed coat on drying dynamic characteristics and the changes of seed coat structure were investigated. A mathematical model was established to simulate the drying process and determine the moisture diffusivity. Numerical results agree well with the experimental data. The average moisture diffusivity of the seed with separated coat is 1.67 times larger than that of the seed with coat, and the moisture diffusivity of seed cotyledon is 3.2 times larger than that of the seed coat. It is proved that the seed coat is the most main resistance of mass transfer and is also one of the key points of the optimization of heat and mass transfer for seed drying.
基金This work was supported by the National Natural Science Foundation of China(No.52161028)the Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province(No.20213BCJ22017).
文摘Laser 3D printing,also known as laser additive manufacturing(LAM),is favored for its ability to form bulk metallic glass(BMG)and its composite materials(BMGcs)with freeform geometries.In this work,two different kinds of Fe_(41)Co_(7)Cr_(15)Mo_(14)C_(15)B_(6)Y_(2)amorphous coatings(A and B)were prepared by using LAM technology under air-and water-cooled conditions,respectively;meanwhile,to reduce the cracks generated due to the residual thermal stresses,coating C obtained by air-sweep annealing of B with a low energy-density laser.The morphology and amorphous content and microstructure of the coatings were investigated,the results show many cracks in coating B deposited under water-cooled conditions,and its microstructure shows an amorphous-crystal-nanocrystalline mixed structure.Cracking was suppressed in coating C,obtained by air-sweep annealing based on coating B,but the amorphous content was reduced from 32.6 to 13.4%.And the hardness and corrosion resistance of the coating will increase with the increase in the amorphous content.Finally,the internal friction behavior of a BMGcs was prepared on the basis of the process of sample C is compared with that of as-cast amorphous alloys.The results show that the low temperature internal friction behavior of BMGcs is affected by the defects produced during printing,and the high temperature internal friction behavior is affected by the precipitated hard phase.
基金supported in part by an Ontario Research Fund-Research Excellence(ORF-RE)grant(Ontario,Canada)in partnership with Patheon by Thermo Fisher Scientific,Natural Sciences and Engineering Research Council(NSERC)of Canada Discovery Grant and Equipment Grants to Xiao Yu Wu,University of Toronto(Canada),Leslie Dan Faculty of Pharmacy Dean's Fund to Jamie Anne Lugtu-Pe,University of Toronto(Canada),Mitacs Accelerate Internship sponsored by Candoo Pharmatech Company Inc.to Xuning Zhang(Canada),NSERC CREATE ContRoL program support to Sako Mirzaie and Hao Han R.Chang(Canada),Ontario Graduate Scholarship(OGS)to Hao Han R.Chang(Canada),and Pharmaceutical Sciences graduate department scholarships to Hao Han R.Chang and Kuan Chen,University of Toronto(Canada).
文摘Solid oral controlled release formulations feature numerous clinical advantages for drug candidates with adequate solubility and dissolution rate.However,most new chemical entities exhibit poor water solubility,and hence are exempt from such benefits.Although combining drug amorphization with controlled release formulation is promising to elevate drug solubility,like other supersaturating systems,the problem of drug recrystallization has yet to be resolved,particularly within the dosage form.Here,we explored the potential of an emerging,non-leachable terpolymer nanoparticle(TPN)pore former as an internal recrystallization inhibitor within controlled release amorphous solid dispersion(CRASD)beads comprising a poorly soluble drug(celecoxib)reservoir and insoluble polymer(ethylcellulose)membrane.Compared to conventional pore former,polyvinylpyrrolidone(PVP),TPN-containing membranes exhibited superior structural integrity,less crystal formation at the CRASD bead surface,and greater extent of celecoxib release.All-atom molecular dynamics analyses revealed that in the presence of TPN,intra-molecular bonding,crystal formation tendency,diffusion coefficient,and molecular flexibility of celecoxib were reduced,while intermolecular H-bonding was increased as compared to PVP.This work suggests that selection of a pore former that promotes prolonged molecular separation within a nanoporous controlled release membrane structure may serve as an effective strategy to enhance amorphicity preservation inside CRASD.