A novel steady-state optimization (SSO) of internal combustion engine (ICE) strategy is proposed to maximize the efficiency of the overall powertrain for hybrid electric vehicles, in which the ICE efficiency, the ...A novel steady-state optimization (SSO) of internal combustion engine (ICE) strategy is proposed to maximize the efficiency of the overall powertrain for hybrid electric vehicles, in which the ICE efficiency, the efficiencies of the electric motor (EM) and the energy storage device are all explicitly taken into account. In addition, a novel idle optimization of ICE strategy is implemented to obtain the optimal idle operating point of the ICE and corresponding optimal parking generation power of the EM using the view of the novel SSO of ICE strategy. Simulations results show that potential fuel economy improvement is achieved relative to the conventional one which only optimized the ICE efficiency by the novel SSO of ICE strategy, and fuel consumption per voltage increment decreases a lot during the parking charge by the novel idle optimization of ICE strategy.展开更多
Increasing energy consumption in the transportation sector results in challenging greenhouse gas(GHG)emissions and environmental problems.This paper involved integrated assessments on GHG emissions and emergy of the l...Increasing energy consumption in the transportation sector results in challenging greenhouse gas(GHG)emissions and environmental problems.This paper involved integrated assessments on GHG emissions and emergy of the life cycle for the internal combustion engine(ICE)and electric automobiles in the USA over the entire assumed fifteen-year lifetime.The hotspots of GHG emissions as well as emergy indices for the major processes of automobile life cycle within the defined system boundaries have been investigated.The potential strategies for reducing GHG emissions and emergy in the life cycle of both ICE and electric automobiles were further proposed.Based on the current results,the total GHG emissions from the life cycle of ICE automobiles are 4.48 E+07 kg CO2-e which is320 times higher than that of the electric automobiles.The hotspot area of the GHG emissions from ICE and electric automobiles are operation phase and manufacturing process,respectively.Interesting results were observed that comparable total emergy of the ICE automobiles and electric automobiles have been calculated which were 1.54 E+17 and 2.20 E+17 sej,respectively.Analysis on emergy index evidenced a better environmental sustainability of electric automobiles than ICE automobiles over the life cycle due to its higher ESI.To the authors’knowledge,it is the first time to integrate the analysis of GHG emissions together with emergy in industrial area of automobile engineering.It is expected that the integration of emergy and GHG emissions analysis may provide a comprehensive perspective on eco-industrial sustainability of automobile engineering.展开更多
In this paper, implantation of fuzzy logic controller for parallel hybrid electric vehicles (PHEV) is presented. In PHEV the required torque is generated by a combination of internal-combustion engine (ICE) and an...In this paper, implantation of fuzzy logic controller for parallel hybrid electric vehicles (PHEV) is presented. In PHEV the required torque is generated by a combination of internal-combustion engine (ICE) and an electric motor. The controller simulated using the SIMULINK/MATLAB package. The controller is designed based on the desired speed for driving and the state of speed error. In the other hand, performance of PHEV and ICE under different road cycle is given. The hardware setup is done for electric propulsion system; the system contains the induction motor, the three phase IGBT inverter with control circuit using microcontroller. The closed loop control system used a DC permanent generator whose output voltage is related to motor speed. Comparison between simulation and experimental results show accurate matching.展开更多
针对目前火花塞点火系统燃烧速度慢、燃烧效率低下等问题,提出了一种利用微波谐振腔实现多点点火的方法。通过理论分析和模拟仿真、优化,确定了横磁振荡模式(TM010)谐振腔的尺寸及其发生谐振时的场强分布。同时采用高速相机和压力传感器...针对目前火花塞点火系统燃烧速度慢、燃烧效率低下等问题,提出了一种利用微波谐振腔实现多点点火的方法。通过理论分析和模拟仿真、优化,确定了横磁振荡模式(TM010)谐振腔的尺寸及其发生谐振时的场强分布。同时采用高速相机和压力传感器,对点火燃烧过程进行可视化分析和燃烧压力特性分析。结果表明:与传统的火花塞的点火方法相比,在实验气压为200 k Pa的条件下,这种方法可以缩短到达压力峰值的时间约15%,并且可以使峰值压力提高约5%。因此,这种方法能够实现多点点火。展开更多
基金National Hi-tech Research end Development Program of China (863 Program,No.2002AA501700,No.2003AA501012)
文摘A novel steady-state optimization (SSO) of internal combustion engine (ICE) strategy is proposed to maximize the efficiency of the overall powertrain for hybrid electric vehicles, in which the ICE efficiency, the efficiencies of the electric motor (EM) and the energy storage device are all explicitly taken into account. In addition, a novel idle optimization of ICE strategy is implemented to obtain the optimal idle operating point of the ICE and corresponding optimal parking generation power of the EM using the view of the novel SSO of ICE strategy. Simulations results show that potential fuel economy improvement is achieved relative to the conventional one which only optimized the ICE efficiency by the novel SSO of ICE strategy, and fuel consumption per voltage increment decreases a lot during the parking charge by the novel idle optimization of ICE strategy.
基金financially supported by National Natural Science Foundation for Young Scientists of China(Grant No.51608531)
文摘Increasing energy consumption in the transportation sector results in challenging greenhouse gas(GHG)emissions and environmental problems.This paper involved integrated assessments on GHG emissions and emergy of the life cycle for the internal combustion engine(ICE)and electric automobiles in the USA over the entire assumed fifteen-year lifetime.The hotspots of GHG emissions as well as emergy indices for the major processes of automobile life cycle within the defined system boundaries have been investigated.The potential strategies for reducing GHG emissions and emergy in the life cycle of both ICE and electric automobiles were further proposed.Based on the current results,the total GHG emissions from the life cycle of ICE automobiles are 4.48 E+07 kg CO2-e which is320 times higher than that of the electric automobiles.The hotspot area of the GHG emissions from ICE and electric automobiles are operation phase and manufacturing process,respectively.Interesting results were observed that comparable total emergy of the ICE automobiles and electric automobiles have been calculated which were 1.54 E+17 and 2.20 E+17 sej,respectively.Analysis on emergy index evidenced a better environmental sustainability of electric automobiles than ICE automobiles over the life cycle due to its higher ESI.To the authors’knowledge,it is the first time to integrate the analysis of GHG emissions together with emergy in industrial area of automobile engineering.It is expected that the integration of emergy and GHG emissions analysis may provide a comprehensive perspective on eco-industrial sustainability of automobile engineering.
文摘In this paper, implantation of fuzzy logic controller for parallel hybrid electric vehicles (PHEV) is presented. In PHEV the required torque is generated by a combination of internal-combustion engine (ICE) and an electric motor. The controller simulated using the SIMULINK/MATLAB package. The controller is designed based on the desired speed for driving and the state of speed error. In the other hand, performance of PHEV and ICE under different road cycle is given. The hardware setup is done for electric propulsion system; the system contains the induction motor, the three phase IGBT inverter with control circuit using microcontroller. The closed loop control system used a DC permanent generator whose output voltage is related to motor speed. Comparison between simulation and experimental results show accurate matching.
文摘针对目前火花塞点火系统燃烧速度慢、燃烧效率低下等问题,提出了一种利用微波谐振腔实现多点点火的方法。通过理论分析和模拟仿真、优化,确定了横磁振荡模式(TM010)谐振腔的尺寸及其发生谐振时的场强分布。同时采用高速相机和压力传感器,对点火燃烧过程进行可视化分析和燃烧压力特性分析。结果表明:与传统的火花塞的点火方法相比,在实验气压为200 k Pa的条件下,这种方法可以缩短到达压力峰值的时间约15%,并且可以使峰值压力提高约5%。因此,这种方法能够实现多点点火。