期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Vehicle Active Steering Control Research Based on Two-DOF Robust Internal Model Control 被引量:12
1
作者 WU Jian LIU Yahui +3 位作者 WANG Fengbo BAO Chunjiang SUN Qun ZHAO Youqun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期739-746,共8页
Because of vehicle's external disturbances and model uncertainties,robust control algorithms have obtained popularity in vehicle stability control.The robust control usually gives up performance in order to guarantee... Because of vehicle's external disturbances and model uncertainties,robust control algorithms have obtained popularity in vehicle stability control.The robust control usually gives up performance in order to guarantee the robustness of the control algorithm,therefore an improved robust internal model control(IMC) algorithm blending model tracking and internal model control is put forward for active steering system in order to reach high performance of yaw rate tracking with certain robustness.The proposed algorithm inherits the good model tracking ability of the IMC control and guarantees robustness to model uncertainties.In order to separate the design process of model tracking from the robustness design process,the improved 2 degree of freedom(DOF) robust internal model controller structure is given from the standard Youla parameterization.Simulations of double lane change maneuver and those of crosswind disturbances are conducted for evaluating the robust control algorithm,on the basis of a nonlinear vehicle simulation model with a magic tyre model.Results show that the established 2-DOF robust IMC method has better model tracking ability and a guaranteed level of robustness and robust performance,which can enhance the vehicle stability and handling,regardless of variations of the vehicle model parameters and the external crosswind interferences.Contradiction between performance and robustness of active steering control algorithm is solved and higher control performance with certain robustness to model uncertainties is obtained. 展开更多
关键词 active steering internal model control model tracking robust performance crosswind disturbances
下载PDF
Design of active disturbance rejection internal model control strategy for SISO system with time delay process 被引量:3
2
作者 靳其兵 刘立业 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1725-1736,共12页
A novel control scheme of active disturbance rejection internal model control(ADRIMC) is proposed to improve the anti-interference ability and robustness for the dead-time process. The active anti-interference concept... A novel control scheme of active disturbance rejection internal model control(ADRIMC) is proposed to improve the anti-interference ability and robustness for the dead-time process. The active anti-interference concept is introduced into the internal model control(IMC) by analyzing the relationship between IMC and disturbance observer control(DOB). Further, a design process of disturbance filter is presented to realize the active anti-interference ability for ADRIMC scheme. The disturbance filter is used to estimate an equivalent disturbance consisting of both external disturbances and internal disturbances caused by model mismatches.Simulation results demonstrate that the proposed method possesses a good disturbance rejection performance, though losing some partial dynamic performance. In other words, the proposed method shows a tradeoff between the dynamic performance and the system robust. 展开更多
关键词 internal model control (IMC) disturbance observer (DOB) active disturbance rejection internal model controller(ADRIMC) low pass filter (LPF) robusmess
下载PDF
Generalized Internal Model Robust Control for Active Front Steering Intervention 被引量:8
3
作者 WU Jian ZHAO Youqun +2 位作者 JI Xuewu LIU Yahui ZHANG Lipeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第2期285-293,共9页
Because of the tire nonlinearity and vehicle's parameters'uncertainties,robust control methods based on the worst cases,such as H_∞,μsynthesis,have been widely used in active front steering control,however,in orde... Because of the tire nonlinearity and vehicle's parameters'uncertainties,robust control methods based on the worst cases,such as H_∞,μsynthesis,have been widely used in active front steering control,however,in order to guarantee the stability of active front steering system(AFS)controller,the robust control is at the cost of performance so that the robust controller is a little conservative and has low performance for AFS control.In this paper,a generalized internal model robust control(GIMC)that can overcome the contradiction between performance and stability is used in the AFS control.In GIMC,the Youla parameterization is used in an improved way.And GIMC controller includes two sections:a high performance controller designed for the nominal vehicle model and a robust controller compensating the vehicle parameters'uncertainties and some external disturbances.Simulations of double lane change(DLC)maneuver and that of braking on split-μroad are conducted to compare the performance and stability of the GIMC control,the nominal performance PID controller and the H_∞controller.Simulation results show that the high nominal performance PID controller will be unstable under some extreme situations because of large vehicle's parameters variations,H_∞controller is conservative so that the performance is a little low,and only the GIMC controller overcomes the contradiction between performance and robustness,which can both ensure the stability of the AFS controller and guarantee the high performance of the AFS controller.Therefore,the GIMC method proposed for AFS can overcome some disadvantages of control methods used by current AFS system,that is,can solve the instability of PID or LQP control methods and the low performance of the standard H_∞controller. 展开更多
关键词 active front steering system generalized internal model robust control H_∞ optimization PID split-μ road
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部