The degradation of atrazine (ATZ),sulfamethoxazole (SMX) and metoprolol (MET) in flowthrough VUV/UV/H2O2reactors was investigated with a focus on the effects of H2O2dosage and reactor internal diameter (ID).Results sh...The degradation of atrazine (ATZ),sulfamethoxazole (SMX) and metoprolol (MET) in flowthrough VUV/UV/H2O2reactors was investigated with a focus on the effects of H2O2dosage and reactor internal diameter (ID).Results showed that the micropollutants were degraded efficiently in the flow-through VUV/UV/H2O2reactors following the pseudo first-order kinetics (R2>0.92).However,the steady-state assumption (SSA) kinetic model being vital in batch reactors was found invalid in flow-through reactors where fluid mixing was less sufficient.With the increase of H2O2dosage,the ATZ removal efficiency remained almost constant while the SMX and MET removal was enhanced to different extents,which could be explained by the different reactivities of the pollutants towards HO·.A larger reactor ID resulted in lower degradation rate constants for all the three pollutants on account of the lower average fluence rate,but the change in energy efficiency was much more complicated.In reality,the electrical energy per order (EEO) of the investigated VUV/UV/H2O2treatments ranged between 0.14–0.20,0.07–0.14 and 0.09–0.26 k Wh/m3/order for ATZ,SMX and MET,respectively,with the lowest EEOfor each pollutant obtained under varied H2O2dosages and reactor IDs.This study has demonstrated the efficiency of VUV/UV/H2O2process for micropollutant removal and the inadequacy of the SSA model in flow-through reactors,and elaborated the influential mechanisms of H2O2dosage and reactor ID on the reactor performances.展开更多
large diameter internal thread of high-strength steel(LDITHSS) manufactured by traditional methods always has the problems of low accuracy and short life. Compared with traditional methods, the cold extrusion proces...large diameter internal thread of high-strength steel(LDITHSS) manufactured by traditional methods always has the problems of low accuracy and short life. Compared with traditional methods, the cold extrusion process is an effective means to realize higher accuracy and longer life. The low-cycle fatigue properties of LDITHSS are obtained by experiments, and the initiation and propagation of fatigue cracks are observed by scanning electron microscope(SEM). Based on the mechanical properties, surface microstructure and residual stress, the strengthening mechanism of cold extruded large diameter internal thread(LDIT) is discussed. The results show that new grains or sub-grains can be formed on the surface of LDIT due to grain segmentation and grain refinement during cold extrusion. The fibrous structures appear as elongated and streamlined along the normal direction of the tooth surface which leads to residual compressive stress on the extruded surface. The maximum tension stress of LDIT after cold extrusion is found to be 192.55 k N. Under low stress cycling, the yield stress on thread increases, the propagation rate of crack reduces, the fatigue life is thus improved significantly with decreasing surface grain diameter and the average fatigue life increases to 45.539×10~3 cycle when the maximum applied load decreases to 120 k N. The low cycle fatigue and strengthening mechanism of cold extruded LDIT revealed by this research has significant importance to promote application of internal thread by cold extrusion processing.展开更多
基金supported by the National Natural Science Foundation of China(No.51908536)the Ministry of Science and Technology of China(No.2018YFE0204103)。
文摘The degradation of atrazine (ATZ),sulfamethoxazole (SMX) and metoprolol (MET) in flowthrough VUV/UV/H2O2reactors was investigated with a focus on the effects of H2O2dosage and reactor internal diameter (ID).Results showed that the micropollutants were degraded efficiently in the flow-through VUV/UV/H2O2reactors following the pseudo first-order kinetics (R2>0.92).However,the steady-state assumption (SSA) kinetic model being vital in batch reactors was found invalid in flow-through reactors where fluid mixing was less sufficient.With the increase of H2O2dosage,the ATZ removal efficiency remained almost constant while the SMX and MET removal was enhanced to different extents,which could be explained by the different reactivities of the pollutants towards HO·.A larger reactor ID resulted in lower degradation rate constants for all the three pollutants on account of the lower average fluence rate,but the change in energy efficiency was much more complicated.In reality,the electrical energy per order (EEO) of the investigated VUV/UV/H2O2treatments ranged between 0.14–0.20,0.07–0.14 and 0.09–0.26 k Wh/m3/order for ATZ,SMX and MET,respectively,with the lowest EEOfor each pollutant obtained under varied H2O2dosages and reactor IDs.This study has demonstrated the efficiency of VUV/UV/H2O2process for micropollutant removal and the inadequacy of the SSA model in flow-through reactors,and elaborated the influential mechanisms of H2O2dosage and reactor ID on the reactor performances.
基金Supported by National Natural Science Foundation of China(Grant No.51372216)Jiangsu Science and Technology Plan Project of China(Grant No.BE2015113)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.BKJB460016)
文摘large diameter internal thread of high-strength steel(LDITHSS) manufactured by traditional methods always has the problems of low accuracy and short life. Compared with traditional methods, the cold extrusion process is an effective means to realize higher accuracy and longer life. The low-cycle fatigue properties of LDITHSS are obtained by experiments, and the initiation and propagation of fatigue cracks are observed by scanning electron microscope(SEM). Based on the mechanical properties, surface microstructure and residual stress, the strengthening mechanism of cold extruded large diameter internal thread(LDIT) is discussed. The results show that new grains or sub-grains can be formed on the surface of LDIT due to grain segmentation and grain refinement during cold extrusion. The fibrous structures appear as elongated and streamlined along the normal direction of the tooth surface which leads to residual compressive stress on the extruded surface. The maximum tension stress of LDIT after cold extrusion is found to be 192.55 k N. Under low stress cycling, the yield stress on thread increases, the propagation rate of crack reduces, the fatigue life is thus improved significantly with decreasing surface grain diameter and the average fatigue life increases to 45.539×10~3 cycle when the maximum applied load decreases to 120 k N. The low cycle fatigue and strengthening mechanism of cold extruded LDIT revealed by this research has significant importance to promote application of internal thread by cold extrusion processing.