Numerical solutions for fully developed laminar flow in internally finned tubes with trapezoidal and triangular fin profiles were given with Finite Element Method (FEM): The heat transfer characteristics were obtained...Numerical solutions for fully developed laminar flow in internally finned tubes with trapezoidal and triangular fin profiles were given with Finite Element Method (FEM): The heat transfer characteristics were obtained and compared under the boundary conditions of uniform heat flux, uniform wall temperature, and the third boundary condition with finite wall thermal conductivity considered. The numerical results show that boundary conditions have pronounced effects on the temperature field.Furthermore, a new mechanism on the heat transfer augmentation of internally finned tubes is proposed.展开更多
文摘Numerical solutions for fully developed laminar flow in internally finned tubes with trapezoidal and triangular fin profiles were given with Finite Element Method (FEM): The heat transfer characteristics were obtained and compared under the boundary conditions of uniform heat flux, uniform wall temperature, and the third boundary condition with finite wall thermal conductivity considered. The numerical results show that boundary conditions have pronounced effects on the temperature field.Furthermore, a new mechanism on the heat transfer augmentation of internally finned tubes is proposed.