The stress and the elastic deflection of internal ring gear in high-speed spur planetary gear units are investigated. A rim thickness parameter is defined as the flexibility of internal ring gear. Six evenly spaced li...The stress and the elastic deflection of internal ring gear in high-speed spur planetary gear units are investigated. A rim thickness parameter is defined as the flexibility of internal ring gear. Six evenly spaced linear springs are used to describe the fitting status between internal ring gear and the gearcase. The finite element model of the whole internal ring gear is established by means of Pro/E and ANSYS. The loads on meshing teeth of internal ring gear are applied according to the contact ratio and the load-sharing coefficient. With the finite element analysis (FEA), the influences of flexibility and fitting status on the stress and elastic deflection of internal ring gear are predicted. The simulation reveals that the principal stress and deflection increase with the decrease of rim thickness of internal ring gear. Moreover, larger spring stiffness helps to reduce the stress and deflection of internal ring gear. Therefore, the flexibility of internal ring gear must be considered during the design of high-speed planetary gear transmissions.展开更多
The thermal elasto-hydrodynamic lubrication characteristics of the internal meshing gears in a planetary gear train under vibrations were examined considering the influence of the modification coefficient and time-var...The thermal elasto-hydrodynamic lubrication characteristics of the internal meshing gears in a planetary gear train under vibrations were examined considering the influence of the modification coefficient and time-varying meshing stiffness.Based on dynamic theory of the gear system,a dynamic model of the planetary gear train was established.The lubrication performances of modified gear systems under vibrations and static loads were analyzed.Compared with other transmission types,the best lubrication effect could be produced by the positive transmission.A thicker lubricating oil film could be formed,and the friction coefficient and oil film flash temperature are the smallest.Increasing modification coefficient improves the lubrication performance continuously but intensifies the engage-in and tooth-change impact.For the planetary and inner gears,the increase in the modification coefficient also leads a decrease in the oil film stiffness.展开更多
Aiming at the issue of sliding ratio,an internal gear pair is proposed which consists of an involute internal gear and a pinion with quadratic curve teeth.Particularly,the contact pattern is point contact and the pini...Aiming at the issue of sliding ratio,an internal gear pair is proposed which consists of an involute internal gear and a pinion with quadratic curve teeth.Particularly,the contact pattern is point contact and the pinion is generated based on an involute gear.The generation method and mathematical models of the gear pair are presented.The sliding ratio is calculated and the general calculation formulas of sliding ratios are developed.Also,the comparison between the involute gear and proposed gear is made.The adaptability of center distance and contact stress are also discussed.In addition,the gear pair was manufactured and inspected according to the exactitude solid model of the gear pair.In order to confirm this model to be effective,the efficiency experiment and the contrast experiment with the involute gear pair were performed.Furthermore,these two types of pinions were analyzed by scanning electron microscope and wear depths were measured by measuring center.The experiment results show that the efficiency of the internal gear pair is stable at a range about 97.1%to 98.6%and wear depth is less than 50%of the involute gear pair.The internal gear pair is expected to have excellent transmission performance.展开更多
The involute bevoloid gears has been more and more widely used in Practical industry, but the researchahout its interference has never been reported. In order to satisfy the design need of intemal involute bevoloid ge...The involute bevoloid gears has been more and more widely used in Practical industry, but the researchahout its interference has never been reported. In order to satisfy the design need of intemal involute bevoloid geare,two importan interference conditions are discussed in deail and verification formulae are given as appropriate. There-fore, this paper has an instructive meaning to the design of intemal boloid geare.展开更多
The mathematical model of tooth flanks of a plunge shaving cutter for finishing internal gears is established, and the correction to tooth profile and tooth curve of the cutter is proposed. Moreover, the tooth profile...The mathematical model of tooth flanks of a plunge shaving cutter for finishing internal gears is established, and the correction to tooth profile and tooth curve of the cutter is proposed. Moreover, the tooth profile error and the convex tooth curve of internal gears, when the cutter is not modified, are offered, and then a simple, convenient, reliable and practical method to design and finish convex teeth of internal gears is presented.展开更多
Extensive studies on nonlinear dynamics of gear systems with internal excitation or external excitation respectively have been carried out. However, the nonlinear characteristics of gear systems under combined interna...Extensive studies on nonlinear dynamics of gear systems with internal excitation or external excitation respectively have been carried out. However, the nonlinear characteristics of gear systems under combined internal and external excitations are scarcely investigated. An eight-degree-of-freedom(8-DOF) nonlinear spur gear-rotor-bearing model, which contains backlash, transmission error, eccentricity, gravity and input/output torque, is established, and the coupled lateral-torsional vibration characteristics are studied. Based on the equations of motion, the coupled spur gear-rotor-bearing system(SGRBS) is investigated using the Runge-Kutta numerical method, and the effects of rotational speed, error fluctuation and load fluctuation on the dynamic responses are explored. The results show that a diverse range of nonlinear dynamic characteristics such as periodic motion, quasi-periodic motion, chaotic behaviors and impacts exhibited in the system are strongly attributed to the interaction between internal and external excitations. Significantly, the changing rotational speed could effectively control the vibration of the system. Vibration level increases with the increasing error fluctuation. Whereas the load fluctuation has an influence on the nonlinear dynamic characteristics and the increasing excitation force amplitude makes the vibration amplitude increase, the chaotic motion may be restricted. The proposed model and numerical results can be used for diagnosis of faults and vibration control of practical SGRBS.展开更多
基金Key Project of Ministry of Education of China (No.106050).
文摘The stress and the elastic deflection of internal ring gear in high-speed spur planetary gear units are investigated. A rim thickness parameter is defined as the flexibility of internal ring gear. Six evenly spaced linear springs are used to describe the fitting status between internal ring gear and the gearcase. The finite element model of the whole internal ring gear is established by means of Pro/E and ANSYS. The loads on meshing teeth of internal ring gear are applied according to the contact ratio and the load-sharing coefficient. With the finite element analysis (FEA), the influences of flexibility and fitting status on the stress and elastic deflection of internal ring gear are predicted. The simulation reveals that the principal stress and deflection increase with the decrease of rim thickness of internal ring gear. Moreover, larger spring stiffness helps to reduce the stress and deflection of internal ring gear. Therefore, the flexibility of internal ring gear must be considered during the design of high-speed planetary gear transmissions.
基金Projects(51575289,51705270)supported by the National Natural Science Foundation of China。
文摘The thermal elasto-hydrodynamic lubrication characteristics of the internal meshing gears in a planetary gear train under vibrations were examined considering the influence of the modification coefficient and time-varying meshing stiffness.Based on dynamic theory of the gear system,a dynamic model of the planetary gear train was established.The lubrication performances of modified gear systems under vibrations and static loads were analyzed.Compared with other transmission types,the best lubrication effect could be produced by the positive transmission.A thicker lubricating oil film could be formed,and the friction coefficient and oil film flash temperature are the smallest.Increasing modification coefficient improves the lubrication performance continuously but intensifies the engage-in and tooth-change impact.For the planetary and inner gears,the increase in the modification coefficient also leads a decrease in the oil film stiffness.
基金Project(51575062)supported by the National Natural Science Foundation of ChinaProject(SM2014D202)supported by the Fund of Shanghai Key Laboratory of Spacecraft Mechanism,China
文摘Aiming at the issue of sliding ratio,an internal gear pair is proposed which consists of an involute internal gear and a pinion with quadratic curve teeth.Particularly,the contact pattern is point contact and the pinion is generated based on an involute gear.The generation method and mathematical models of the gear pair are presented.The sliding ratio is calculated and the general calculation formulas of sliding ratios are developed.Also,the comparison between the involute gear and proposed gear is made.The adaptability of center distance and contact stress are also discussed.In addition,the gear pair was manufactured and inspected according to the exactitude solid model of the gear pair.In order to confirm this model to be effective,the efficiency experiment and the contrast experiment with the involute gear pair were performed.Furthermore,these two types of pinions were analyzed by scanning electron microscope and wear depths were measured by measuring center.The experiment results show that the efficiency of the internal gear pair is stable at a range about 97.1%to 98.6%and wear depth is less than 50%of the involute gear pair.The internal gear pair is expected to have excellent transmission performance.
文摘The involute bevoloid gears has been more and more widely used in Practical industry, but the researchahout its interference has never been reported. In order to satisfy the design need of intemal involute bevoloid geare,two importan interference conditions are discussed in deail and verification formulae are given as appropriate. There-fore, this paper has an instructive meaning to the design of intemal boloid geare.
文摘The mathematical model of tooth flanks of a plunge shaving cutter for finishing internal gears is established, and the correction to tooth profile and tooth curve of the cutter is proposed. Moreover, the tooth profile error and the convex tooth curve of internal gears, when the cutter is not modified, are offered, and then a simple, convenient, reliable and practical method to design and finish convex teeth of internal gears is presented.
基金Supported by National Natural Science Foundation of China(Grant No.51475084)
文摘Extensive studies on nonlinear dynamics of gear systems with internal excitation or external excitation respectively have been carried out. However, the nonlinear characteristics of gear systems under combined internal and external excitations are scarcely investigated. An eight-degree-of-freedom(8-DOF) nonlinear spur gear-rotor-bearing model, which contains backlash, transmission error, eccentricity, gravity and input/output torque, is established, and the coupled lateral-torsional vibration characteristics are studied. Based on the equations of motion, the coupled spur gear-rotor-bearing system(SGRBS) is investigated using the Runge-Kutta numerical method, and the effects of rotational speed, error fluctuation and load fluctuation on the dynamic responses are explored. The results show that a diverse range of nonlinear dynamic characteristics such as periodic motion, quasi-periodic motion, chaotic behaviors and impacts exhibited in the system are strongly attributed to the interaction between internal and external excitations. Significantly, the changing rotational speed could effectively control the vibration of the system. Vibration level increases with the increasing error fluctuation. Whereas the load fluctuation has an influence on the nonlinear dynamic characteristics and the increasing excitation force amplitude makes the vibration amplitude increase, the chaotic motion may be restricted. The proposed model and numerical results can be used for diagnosis of faults and vibration control of practical SGRBS.