Sediments have a significant influence on the cycling of nutrient elements in lake environments. In order to assess the distribution characteristics and estimate the bioavailability of phosphorus and nitrogen in Dianc...Sediments have a significant influence on the cycling of nutrient elements in lake environments. In order to assess the distribution characteristics and estimate the bioavailability of phosphorus and nitrogen in Dianchi Lake, organic and inorganic phosphorus and nitrogen forms were analysed. The 210 Pb radiometric dating method was employed to study temporal changes in the phosphorus and nitrogen pools in Dianchi Lake. The result show that the total phosphorus(TP) and total nitrogen(TN) were both at high concentrations, ranging from 697.5–3210.0 mg/kg and 1263.7–7155.2 mg/kg, respectively. Inorganic phosphorus(IP) and total organic nitrogen(TON) were the main constituents, at percentages of 59%–78% and 74%–95%, respectively, in the sediments. Spatially, there was a decreasing trend in phosphorus and nitrogen contents from the south and north to the lake centre, which is related to the distribution pattern of local economic production. The burial rates of the various phosphorus and nitrogen forms increased in same spatially and over time. Particularly in the past two decades, the burial rates doubled, with that TN reached to 1.287 mg/(cm^2·yr) in 2014. As the most reactive forms, nitrate nitrogen(NO_3-N) and ammonia nitrogen(NH_4-N) were buried more rapidly in the south region, implying that the potential for releasing sedimentary nitrogen increased from north to south. Based on their concentrations and burial rates, the internal loads of phosphorus and nitrogen were analysed for the last century. A TP pool of 71597.6 t and a TN pool of 81191.7 t were estimated for Dianchi Lake. Bioavailable phosphorus and nitrogen pools were also estimated at 44468.0 t and 5429.7 t, respectively, for the last century.展开更多
This study aimed to evaluate the external and internal fluxes of nutrients of an urban eutrophic reservoir (lbirit6 reservoir, SE-Brazil). External loads were estimated in the tributaries (Pintados and Ibirit6 cre...This study aimed to evaluate the external and internal fluxes of nutrients of an urban eutrophic reservoir (lbirit6 reservoir, SE-Brazil). External loads were estimated in the tributaries (Pintados and Ibirit6 creeks) through nutrient concentrations and discharge measurements. Using Fick's law, internal loads were estimated in the reservoir from fluxes across sediment-water interface from nutrient concentration gradients between the pore water and the water. The Ibirit6 creek (urban sewage recipient) contributes with 72%-47% of ammonium (NH4^+) and 100%-8% of SRP (soluble reactive phosphorus) of the total quantity entering the reservoir, whereas the Pintados creek (oil refinery effluent recipient) contributions are 20%-19% and 44%-100%, respectively. Despite the high external loads (130 and 2.2 ton-yr^-1 of NH4+ and SRP, respectively), internal loads (average flux of 120 and 2 mg·cm^-2yr^-1, respectively) correspond to 25% of the total external loads which may sustain a high productivity in the reservoir for a long time even if the external loads are controlled. The stocks of ammonium and SRP of the interstitial water (100 cm of sediment) would be released to the water in six years and five months, respectively, The release time would be extremely larger (〉 3,000 years) considering the stocks of total N and bioavailable P.展开更多
This paper investigates the three-dimensional crack propagation and damage evolution process of metallic column shells under internal explosive loading.The calibration of four typical failure parameters for 40CrMnSiB ...This paper investigates the three-dimensional crack propagation and damage evolution process of metallic column shells under internal explosive loading.The calibration of four typical failure parameters for 40CrMnSiB steel was conducted through experiments and subsequently applied to simulations.The numerical simulation results employing the four failure criteria were compared with the differences and similarities observed in freeze-recovery tests and ultra-high-speed tests.This analysis addressed the critical issue of determining failure criteria for the fracture of a metal shell under internal explosive loads.Building upon this foundation,the damage parameter D_(c),linked to the cumulative crack density,was defined based on the evolution characteristics of a substantial number of cracks.The relationship between the damage parameter and crack velocity over time was established,and the influence of the internal central pressure on the damage parameter and crack velocity was investigated.Variations in the fracture modes were found under different failure criteria,with the principal strain failure criterion proving to be the most effective for simulating 3D crack propagation in a pure shear fracture mode.Through statistical analysis of the shell penetration fracture radius data,it was determined that the fracture radius remained essentially constant during the crack evolution process and could be considered a constant.The propagation velocity of axial cracks ranged between 5300 m/s and 12600 m/s,surpassing the Rayleigh wave velocity of the shell material and decreasing linearly with time.The increase in shell damage exhibited an initial rapid phase,followed by deceleration,demonstrating accelerated damage during the propagation stage of the blast wave and decelerated damage after the arrival of the rarefaction wave.This study provides an effective approach for investigating crack propagation and damage evolution.The derived crack propagation and damage evolution law serves as a valuable reference for the development of crack velocity theory and the construction of shell damage evolution modes.展开更多
Non-cylindrical casings filled with explosives have undergone rapid development in warhead design and explosion control.The fragment spatial distribution of prismatic casings is more complex than that of traditional c...Non-cylindrical casings filled with explosives have undergone rapid development in warhead design and explosion control.The fragment spatial distribution of prismatic casings is more complex than that of traditional cylindrical casings.In this study,numerical and experimental investigations into the fragment spatial distribution of a prismatic casing were conducted.A new numerical method,which adds the Lagrangian marker points to the Eulerian grid,was proposed to track the multi-material interfaces and material dynamic fractures.Physical quantity mappings between the Lagrangian marker points and Eulerian grid were achieved by their topological relationship.Thereafter,the fragment spatial distributions of the prismatic casing with different fragment sizes,fragment shapes,and casing geometries were obtained using the numerical method.Moreover,fragment spatial distribution experiments were conducted on the prismatic casing with different fragment sizes and shapes,and the experimental data were compared with the numerical results.The effects of the fragment and casing geometry on the fragment spatial distributions were determined by analyzing the numerical results and experimental data.Finally,a formula including the casing geometry parameters was fitted to predict the fragment spatial distribution of the prismatic casing under internal explosive loading.展开更多
In order to design and retrofit a subway station to resist an internal blast, the distribution of blast loading and its effects on structures should be investigated firstly. In this paper, the behavior of a typical su...In order to design and retrofit a subway station to resist an internal blast, the distribution of blast loading and its effects on structures should be investigated firstly. In this paper, the behavior of a typical subway station subjected to different internal blast Ioadings was analyzed. It briefly introduced the geometric characteristics and material constitutive model of an existing two-layer and three-span frame subway station. Then three cases of different explosive charges were consid- ered to analyze the dynamic responses of the structure. Finally, the maximum principal stress, dis- placement and velocity of the columns in the three cases were obtained and discussed. It con- cluded that the responses of the columns are sensitive to the charge of explosive and the distance from the detonation. It's also found that the stairs between the two layers have significant effects on the distribution of the maximum principal stress of the columns in the upper layer. The explicit dynamic nonlinear finite element software ANSYS/LS-DYNA was used in this study.展开更多
The RTQ-C (Technical Requirements of Quality for the Energy Performance Level of Commercial Buildings) publication classified the buildings in five efficiency levels. In RTQ-C, the evaluation can be done with two me...The RTQ-C (Technical Requirements of Quality for the Energy Performance Level of Commercial Buildings) publication classified the buildings in five efficiency levels. In RTQ-C, the evaluation can be done with two methods: a prescriptive method and a simulation one. This paper aims to identify the sensibility of the prescriptive method RTQ-C regarding the variation of equipment internal load density in office buildings in bioclimatic Zones I and 7 of the Brazilian bioclimatic zoning. The research results show that the building with walls and roof configured to meet specific prerequisites for energy efficiency Levels B and C had a lower consumption than buildings that meet the prerequisites to Level A. The study also showed that buildings with high internal load density of equipment, maximum shape factor and high, with walls and roofs with higher thermal transmittance, have lower power consumption than constructions with an envelope with greater thermal resistance. The increase in internal load density causes an increase in the internal heat generated by the large amount of equipment. In buildings with higher thermal insulation (Level A), the internal heat is maintained in the environment, causing overheating and the need for an air conditioning system.展开更多
Effects of suction dredging on water quality and zooplankton community structure in a shallow of eutrophic lake, were evaluated. The results showed that a decreasing trend for levels of phosphorus, organic matter, tot...Effects of suction dredging on water quality and zooplankton community structure in a shallow of eutrophic lake, were evaluated. The results showed that a decreasing trend for levels of phosphorus, organic matter, total suspended solids, Chlorophyll a and Secchi transparency in the water column was found, while levels of water depth, electrical conductivity, total dissolved solids and NO3^--N concentration increased markedly post-dredging. The effects of dredging on dissolved oxygen, pH value and temperature were almost negligible. The zooplankton community structure responded rapidly to the environmental changes caused mainly by dredging. As a result, the abundance of rotifers decreased, while the density of zooplanktonic crustaceans increased markedly. The representative taxa were Brachionus angularis, B. budapestinensis, B. diversicornis, Synchaeta spp. and Neodiaptomus schmackeri. A distinct relationship between zooplankton taxa composition and their environment, unraveled by a redundancy analysis, indicating that the measured environment contributed to the variations in the zooplankton community structure to some extent. The first four synthetic environmental variables explained 51.7% of the taxonomic structure. Therefore, with the reduction of internal nutrient load and a shift in dominance by less eutrophic species, it inferred that dredging might be one of effective measures for environmental improvements of such lakes.展开更多
The elasto-gravitational deformation response of the Earths solid parts to the perturbations of the pressure and gravity on the core-mantle boundary (CMB) and the solid inner core boundary (ICB), due to the dynamical ...The elasto-gravitational deformation response of the Earths solid parts to the perturbations of the pressure and gravity on the core-mantle boundary (CMB) and the solid inner core boundary (ICB), due to the dynamical behaviors of the fluid outer core (FOC), is discussed. The internal load Love numbers, which are formulized in a general form in this study, are employed to describe the Earths deformation. The preliminary reference Earth model (PREM) is used as an example to calculate the internal load Love numbers on the Earths surface, CMB and ICB, respectively. The characteristics of the Earths deformation variation with the depth and the perturbation periods on the boundaries of the FOC are also investigated. The numerical results indicate that the internal load Love numbers decrease quickly with the increasing degree of the spherical harmonics of the displacement and depend strongly on the perturbation frequencies, especially on the high frequencies. The results, obtained in this work, can be used to construct the boundary conditions for the core dynamics of the long-period oscillations of the Earths fluid outer core.展开更多
In the evaluation of road roughness and its effects on vehicles response in terms of ride quality, loads induced on pavement, drivers' comfort, etc., it is very common to generate road profles based on the equation p...In the evaluation of road roughness and its effects on vehicles response in terms of ride quality, loads induced on pavement, drivers' comfort, etc., it is very common to generate road profles based on the equation provided by ISO 8608 standard, according to which it is possible to group road surface profiles into eight different classes. However, real profiles are significantly different from the artificial ones because of the non-stationary fea- ture of the first ones and the not full capability of the ISO 8608 equation to correctly describe the frequency content of real road profiles. In this paper, the international roughness index, the frequency-weighted vertical acceleration awz according to ISO 2631, and the dynamic load index are applied both on artificial and real profiles, highlighting the different results obtained. The analysis carried out in this work has highlighted some limitation of the ISO 8608 approach in the description of performance and conditions of real pavement profiles. Furthermore, the different sensitivity of the various indices to the fitted power spectral density parameters is shown, which should be taken into account when performing analysis using artificial profiles.展开更多
The present study investigated potential effectiveness of certain chemical candidates for controlling internal phosphorus loading, and for delineating inactivation pattern in sediment depths of an eutrophic pond under...The present study investigated potential effectiveness of certain chemical candidates for controlling internal phosphorus loading, and for delineating inactivation pattern in sediment depths of an eutrophic pond under simulated mesocosm condition. Chemical administration (@ 30 mg/dm3) resulted in phosphate precipitation from water column concomitant with inactivation in sediments, under specific pH range and/or redox regime. The alum-lime combination dosing wrought the maximum reduction in orthophosphate (65.6%) and soluble reactive phosphate (71.9%) in water plus the utmost increment in sediment-P (0.257 ppm). The inactivated P forms typically exhibited a downhill concentration gradient with highest sequestration in the uppermost sediment stratum. Ironbound P displayed the highest mobility while calcium- and aluminum- bound P behaved almost immune to internal feedback dynamics. The combo-treatment was established as the most effective phosphate scavenging and confiscating agent, to be adopted as chemical remediation regime for de-eutrophication, restoration and rehabilitation of the water body.展开更多
Water quality in rivers is vital to humans and to maintenance of biotic and ecological integrity.During the Four Major Rivers restoration of South Korea, remarkable attempts have been made to decrease external nutrien...Water quality in rivers is vital to humans and to maintenance of biotic and ecological integrity.During the Four Major Rivers restoration of South Korea, remarkable attempts have been made to decrease external nutrient loads and moveable weirs were designed to discharge silt that may deposit in pools. However, recently eutrophication of the Nakdong River, which was limited to the lower reaches, is seen to be spreading upstream. The reduction of external nutrient loads to rivers is a long-term goal that is unlikely to lead to reductions in algal blooms for many years because of the time required to implement effective land management strategies. It would therefore be desirable to implement complementary strategies. Regulating the amount of water released is effective at preventing algae blooms in weir pools; so, the relationship between discharge, stratification and bloom formation should be understood in this regard. However, pollutants are likely to accumulate in the riverbed upstream from release points. Thus, to control phosphorus levels, total phosphorus density should be lowered by applying in-river techniques as well. As many ecosystem properties are controlled by multiple processes, simultaneous river bottom improvement techniques, such as combined dissolved oxygen supply and nutrient inactivation, are likely to be effective. The purpose of this review is to present a series of technological approaches that can be used to improve the river bottom area and hence sediment nutrient release, and to illustrate the application of these techniques to the Nakdong River.展开更多
基金National Natural Science Foundation of China(No.41503075,41673108,and 41571324)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,the State Key Laboratory of Lake Science and Environment(No.2016SKL005)China Postdoctoral Science Foundation Funded Project(No.2015M581826)
文摘Sediments have a significant influence on the cycling of nutrient elements in lake environments. In order to assess the distribution characteristics and estimate the bioavailability of phosphorus and nitrogen in Dianchi Lake, organic and inorganic phosphorus and nitrogen forms were analysed. The 210 Pb radiometric dating method was employed to study temporal changes in the phosphorus and nitrogen pools in Dianchi Lake. The result show that the total phosphorus(TP) and total nitrogen(TN) were both at high concentrations, ranging from 697.5–3210.0 mg/kg and 1263.7–7155.2 mg/kg, respectively. Inorganic phosphorus(IP) and total organic nitrogen(TON) were the main constituents, at percentages of 59%–78% and 74%–95%, respectively, in the sediments. Spatially, there was a decreasing trend in phosphorus and nitrogen contents from the south and north to the lake centre, which is related to the distribution pattern of local economic production. The burial rates of the various phosphorus and nitrogen forms increased in same spatially and over time. Particularly in the past two decades, the burial rates doubled, with that TN reached to 1.287 mg/(cm^2·yr) in 2014. As the most reactive forms, nitrate nitrogen(NO_3-N) and ammonia nitrogen(NH_4-N) were buried more rapidly in the south region, implying that the potential for releasing sedimentary nitrogen increased from north to south. Based on their concentrations and burial rates, the internal loads of phosphorus and nitrogen were analysed for the last century. A TP pool of 71597.6 t and a TN pool of 81191.7 t were estimated for Dianchi Lake. Bioavailable phosphorus and nitrogen pools were also estimated at 44468.0 t and 5429.7 t, respectively, for the last century.
文摘This study aimed to evaluate the external and internal fluxes of nutrients of an urban eutrophic reservoir (lbirit6 reservoir, SE-Brazil). External loads were estimated in the tributaries (Pintados and Ibirit6 creeks) through nutrient concentrations and discharge measurements. Using Fick's law, internal loads were estimated in the reservoir from fluxes across sediment-water interface from nutrient concentration gradients between the pore water and the water. The Ibirit6 creek (urban sewage recipient) contributes with 72%-47% of ammonium (NH4^+) and 100%-8% of SRP (soluble reactive phosphorus) of the total quantity entering the reservoir, whereas the Pintados creek (oil refinery effluent recipient) contributions are 20%-19% and 44%-100%, respectively. Despite the high external loads (130 and 2.2 ton-yr^-1 of NH4+ and SRP, respectively), internal loads (average flux of 120 and 2 mg·cm^-2yr^-1, respectively) correspond to 25% of the total external loads which may sustain a high productivity in the reservoir for a long time even if the external loads are controlled. The stocks of ammonium and SRP of the interstitial water (100 cm of sediment) would be released to the water in six years and five months, respectively, The release time would be extremely larger (〉 3,000 years) considering the stocks of total N and bioavailable P.
基金supported by the National Natural Science Foundation of China (Grant No.12302437)Natural Science Foundation of Jiangsu Province (BK20230939)China Postdoctoral Science Foundation (2021M701710)。
文摘This paper investigates the three-dimensional crack propagation and damage evolution process of metallic column shells under internal explosive loading.The calibration of four typical failure parameters for 40CrMnSiB steel was conducted through experiments and subsequently applied to simulations.The numerical simulation results employing the four failure criteria were compared with the differences and similarities observed in freeze-recovery tests and ultra-high-speed tests.This analysis addressed the critical issue of determining failure criteria for the fracture of a metal shell under internal explosive loads.Building upon this foundation,the damage parameter D_(c),linked to the cumulative crack density,was defined based on the evolution characteristics of a substantial number of cracks.The relationship between the damage parameter and crack velocity over time was established,and the influence of the internal central pressure on the damage parameter and crack velocity was investigated.Variations in the fracture modes were found under different failure criteria,with the principal strain failure criterion proving to be the most effective for simulating 3D crack propagation in a pure shear fracture mode.Through statistical analysis of the shell penetration fracture radius data,it was determined that the fracture radius remained essentially constant during the crack evolution process and could be considered a constant.The propagation velocity of axial cracks ranged between 5300 m/s and 12600 m/s,surpassing the Rayleigh wave velocity of the shell material and decreasing linearly with time.The increase in shell damage exhibited an initial rapid phase,followed by deceleration,demonstrating accelerated damage during the propagation stage of the blast wave and decelerated damage after the arrival of the rarefaction wave.This study provides an effective approach for investigating crack propagation and damage evolution.The derived crack propagation and damage evolution law serves as a valuable reference for the development of crack velocity theory and the construction of shell damage evolution modes.
基金supported by the National Natural Science Foundation of China(Grant No.11822203and 11702026)。
文摘Non-cylindrical casings filled with explosives have undergone rapid development in warhead design and explosion control.The fragment spatial distribution of prismatic casings is more complex than that of traditional cylindrical casings.In this study,numerical and experimental investigations into the fragment spatial distribution of a prismatic casing were conducted.A new numerical method,which adds the Lagrangian marker points to the Eulerian grid,was proposed to track the multi-material interfaces and material dynamic fractures.Physical quantity mappings between the Lagrangian marker points and Eulerian grid were achieved by their topological relationship.Thereafter,the fragment spatial distributions of the prismatic casing with different fragment sizes,fragment shapes,and casing geometries were obtained using the numerical method.Moreover,fragment spatial distribution experiments were conducted on the prismatic casing with different fragment sizes and shapes,and the experimental data were compared with the numerical results.The effects of the fragment and casing geometry on the fragment spatial distributions were determined by analyzing the numerical results and experimental data.Finally,a formula including the casing geometry parameters was fitted to predict the fragment spatial distribution of the prismatic casing under internal explosive loading.
文摘In order to design and retrofit a subway station to resist an internal blast, the distribution of blast loading and its effects on structures should be investigated firstly. In this paper, the behavior of a typical subway station subjected to different internal blast Ioadings was analyzed. It briefly introduced the geometric characteristics and material constitutive model of an existing two-layer and three-span frame subway station. Then three cases of different explosive charges were consid- ered to analyze the dynamic responses of the structure. Finally, the maximum principal stress, dis- placement and velocity of the columns in the three cases were obtained and discussed. It con- cluded that the responses of the columns are sensitive to the charge of explosive and the distance from the detonation. It's also found that the stairs between the two layers have significant effects on the distribution of the maximum principal stress of the columns in the upper layer. The explicit dynamic nonlinear finite element software ANSYS/LS-DYNA was used in this study.
文摘The RTQ-C (Technical Requirements of Quality for the Energy Performance Level of Commercial Buildings) publication classified the buildings in five efficiency levels. In RTQ-C, the evaluation can be done with two methods: a prescriptive method and a simulation one. This paper aims to identify the sensibility of the prescriptive method RTQ-C regarding the variation of equipment internal load density in office buildings in bioclimatic Zones I and 7 of the Brazilian bioclimatic zoning. The research results show that the building with walls and roof configured to meet specific prerequisites for energy efficiency Levels B and C had a lower consumption than buildings that meet the prerequisites to Level A. The study also showed that buildings with high internal load density of equipment, maximum shape factor and high, with walls and roofs with higher thermal transmittance, have lower power consumption than constructions with an envelope with greater thermal resistance. The increase in internal load density causes an increase in the internal heat generated by the large amount of equipment. In buildings with higher thermal insulation (Level A), the internal heat is maintained in the environment, causing overheating and the need for an air conditioning system.
基金supported by the High-Tech Research Program (863) of China (No.2009ZX07106-002-004)the National Natural Science Foundation of China (No.30870221,20877093,50808172, 50909091)
文摘Effects of suction dredging on water quality and zooplankton community structure in a shallow of eutrophic lake, were evaluated. The results showed that a decreasing trend for levels of phosphorus, organic matter, total suspended solids, Chlorophyll a and Secchi transparency in the water column was found, while levels of water depth, electrical conductivity, total dissolved solids and NO3^--N concentration increased markedly post-dredging. The effects of dredging on dissolved oxygen, pH value and temperature were almost negligible. The zooplankton community structure responded rapidly to the environmental changes caused mainly by dredging. As a result, the abundance of rotifers decreased, while the density of zooplanktonic crustaceans increased markedly. The representative taxa were Brachionus angularis, B. budapestinensis, B. diversicornis, Synchaeta spp. and Neodiaptomus schmackeri. A distinct relationship between zooplankton taxa composition and their environment, unraveled by a redundancy analysis, indicating that the measured environment contributed to the variations in the zooplankton community structure to some extent. The first four synthetic environmental variables explained 51.7% of the taxonomic structure. Therefore, with the reduction of internal nutrient load and a shift in dominance by less eutrophic species, it inferred that dredging might be one of effective measures for environmental improvements of such lakes.
文摘The elasto-gravitational deformation response of the Earths solid parts to the perturbations of the pressure and gravity on the core-mantle boundary (CMB) and the solid inner core boundary (ICB), due to the dynamical behaviors of the fluid outer core (FOC), is discussed. The internal load Love numbers, which are formulized in a general form in this study, are employed to describe the Earths deformation. The preliminary reference Earth model (PREM) is used as an example to calculate the internal load Love numbers on the Earths surface, CMB and ICB, respectively. The characteristics of the Earths deformation variation with the depth and the perturbation periods on the boundaries of the FOC are also investigated. The numerical results indicate that the internal load Love numbers decrease quickly with the increasing degree of the spherical harmonics of the displacement and depend strongly on the perturbation frequencies, especially on the high frequencies. The results, obtained in this work, can be used to construct the boundary conditions for the core dynamics of the long-period oscillations of the Earths fluid outer core.
文摘In the evaluation of road roughness and its effects on vehicles response in terms of ride quality, loads induced on pavement, drivers' comfort, etc., it is very common to generate road profles based on the equation provided by ISO 8608 standard, according to which it is possible to group road surface profiles into eight different classes. However, real profiles are significantly different from the artificial ones because of the non-stationary fea- ture of the first ones and the not full capability of the ISO 8608 equation to correctly describe the frequency content of real road profiles. In this paper, the international roughness index, the frequency-weighted vertical acceleration awz according to ISO 2631, and the dynamic load index are applied both on artificial and real profiles, highlighting the different results obtained. The analysis carried out in this work has highlighted some limitation of the ISO 8608 approach in the description of performance and conditions of real pavement profiles. Furthermore, the different sensitivity of the various indices to the fitted power spectral density parameters is shown, which should be taken into account when performing analysis using artificial profiles.
文摘The present study investigated potential effectiveness of certain chemical candidates for controlling internal phosphorus loading, and for delineating inactivation pattern in sediment depths of an eutrophic pond under simulated mesocosm condition. Chemical administration (@ 30 mg/dm3) resulted in phosphate precipitation from water column concomitant with inactivation in sediments, under specific pH range and/or redox regime. The alum-lime combination dosing wrought the maximum reduction in orthophosphate (65.6%) and soluble reactive phosphate (71.9%) in water plus the utmost increment in sediment-P (0.257 ppm). The inactivated P forms typically exhibited a downhill concentration gradient with highest sequestration in the uppermost sediment stratum. Ironbound P displayed the highest mobility while calcium- and aluminum- bound P behaved almost immune to internal feedback dynamics. The combo-treatment was established as the most effective phosphate scavenging and confiscating agent, to be adopted as chemical remediation regime for de-eutrophication, restoration and rehabilitation of the water body.
基金supported by the Korea Institute of Civil Engineering and Building Technology, KICT, of Korean Government number 2014–0316
文摘Water quality in rivers is vital to humans and to maintenance of biotic and ecological integrity.During the Four Major Rivers restoration of South Korea, remarkable attempts have been made to decrease external nutrient loads and moveable weirs were designed to discharge silt that may deposit in pools. However, recently eutrophication of the Nakdong River, which was limited to the lower reaches, is seen to be spreading upstream. The reduction of external nutrient loads to rivers is a long-term goal that is unlikely to lead to reductions in algal blooms for many years because of the time required to implement effective land management strategies. It would therefore be desirable to implement complementary strategies. Regulating the amount of water released is effective at preventing algae blooms in weir pools; so, the relationship between discharge, stratification and bloom formation should be understood in this regard. However, pollutants are likely to accumulate in the riverbed upstream from release points. Thus, to control phosphorus levels, total phosphorus density should be lowered by applying in-river techniques as well. As many ecosystem properties are controlled by multiple processes, simultaneous river bottom improvement techniques, such as combined dissolved oxygen supply and nutrient inactivation, are likely to be effective. The purpose of this review is to present a series of technological approaches that can be used to improve the river bottom area and hence sediment nutrient release, and to illustrate the application of these techniques to the Nakdong River.