Total strain controlled cyclic test was performed on 316 LN under uniaxial loadings. Through the partitioning of hysteresis loops, the evolution of two components of cyclic flow stress, the internal and effective stre...Total strain controlled cyclic test was performed on 316 LN under uniaxial loadings. Through the partitioning of hysteresis loops, the evolution of two components of cyclic flow stress, the internal and effective stresses, was reported. The former one determines the cyclic stress response. Based on the transmission electron microscopic(TEM) observation on specimens loaded with scheduled cycles, it is found that planar dislocation structures prevail during the entire cyclic process at low strain amplitude, while a remarkable dislocation rearrangement from planar structures to heterogeneous spatial distributions is companied by a cyclic softening behavior at high strain amplitude. The competition between the evolution of the intergranular and the intragranular components of the internal stress caused by the transition of slip mode induces the cyclic hardening and softening at high strain levels. The intergranular internal stress represents the most part of the internal stress at low strain level.展开更多
基金Funded by the Nuclear Power Major Project(No.2011zx06004-002)
文摘Total strain controlled cyclic test was performed on 316 LN under uniaxial loadings. Through the partitioning of hysteresis loops, the evolution of two components of cyclic flow stress, the internal and effective stresses, was reported. The former one determines the cyclic stress response. Based on the transmission electron microscopic(TEM) observation on specimens loaded with scheduled cycles, it is found that planar dislocation structures prevail during the entire cyclic process at low strain amplitude, while a remarkable dislocation rearrangement from planar structures to heterogeneous spatial distributions is companied by a cyclic softening behavior at high strain amplitude. The competition between the evolution of the intergranular and the intragranular components of the internal stress caused by the transition of slip mode induces the cyclic hardening and softening at high strain levels. The intergranular internal stress represents the most part of the internal stress at low strain level.