期刊文献+
共找到68篇文章
< 1 2 4 >
每页显示 20 50 100
Adaptive Optimal Discrete-Time Output-Feedback Using an Internal Model Principle and Adaptive Dynamic Programming
1
作者 Zhongyang Wang Youqing Wang Zdzisław Kowalczuk 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期131-140,共10页
In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed metho... In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection. 展开更多
关键词 Adaptive dynamic programming(ADP) internal model principle(IMP) output feedback problem policy iteration(PI) value iteration(VI)
下载PDF
Design of active disturbance rejection internal model control strategy for SISO system with time delay process 被引量:3
2
作者 靳其兵 刘立业 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1725-1736,共12页
A novel control scheme of active disturbance rejection internal model control(ADRIMC) is proposed to improve the anti-interference ability and robustness for the dead-time process. The active anti-interference concept... A novel control scheme of active disturbance rejection internal model control(ADRIMC) is proposed to improve the anti-interference ability and robustness for the dead-time process. The active anti-interference concept is introduced into the internal model control(IMC) by analyzing the relationship between IMC and disturbance observer control(DOB). Further, a design process of disturbance filter is presented to realize the active anti-interference ability for ADRIMC scheme. The disturbance filter is used to estimate an equivalent disturbance consisting of both external disturbances and internal disturbances caused by model mismatches.Simulation results demonstrate that the proposed method possesses a good disturbance rejection performance, though losing some partial dynamic performance. In other words, the proposed method shows a tradeoff between the dynamic performance and the system robust. 展开更多
关键词 internal model control(IMC) disturbance observer(DOB) active disturbance rejection internal model controller(ADRIMC) low pass filter(LPF) ROBUSTNESS
下载PDF
Modified Two-Degrees-of-Freedom Internal Model Control for Non-Square Systems with Multiple Time Delays 被引量:25
3
作者 Jian-Chang Liu Nan Chen Xia Yu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2014年第2期122-128,共7页
A modified two-degrees-of-freedom( M-TDOF) internal model control( IMC) method is proposed for non-square systems with multiple time delays and right-half-plane( RHP) zeros. In this method,pseudo-inverse is introduced... A modified two-degrees-of-freedom( M-TDOF) internal model control( IMC) method is proposed for non-square systems with multiple time delays and right-half-plane( RHP) zeros. In this method,pseudo-inverse is introduced to design the internal model controller,and a desired closed-loop transfer function is designed to eliminate the unrealizable factors of the derived controller. In addition,set-point tracking and load-disturbance rejection of each process are separately controlled by two controllers. The simulation results show that in addition to high decoupling performance and robustness,the proposed control method also effectively improves loaddisturbance rejection and simultaneously optimizes the input tracking performance and disturbance rejection performance by selecting the parameters of controllers. Furthermore,the higher tolerance of model mismatch is achieved in this paper. 展开更多
关键词 non-square system two degrees of freedom internal model control
下载PDF
Vehicle Active Steering Control Research Based on Two-DOF Robust Internal Model Control 被引量:12
4
作者 WU Jian LIU Yahui +3 位作者 WANG Fengbo BAO Chunjiang SUN Qun ZHAO Youqun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期739-746,共8页
Because of vehicle's external disturbances and model uncertainties,robust control algorithms have obtained popularity in vehicle stability control.The robust control usually gives up performance in order to guarantee... Because of vehicle's external disturbances and model uncertainties,robust control algorithms have obtained popularity in vehicle stability control.The robust control usually gives up performance in order to guarantee the robustness of the control algorithm,therefore an improved robust internal model control(IMC) algorithm blending model tracking and internal model control is put forward for active steering system in order to reach high performance of yaw rate tracking with certain robustness.The proposed algorithm inherits the good model tracking ability of the IMC control and guarantees robustness to model uncertainties.In order to separate the design process of model tracking from the robustness design process,the improved 2 degree of freedom(DOF) robust internal model controller structure is given from the standard Youla parameterization.Simulations of double lane change maneuver and those of crosswind disturbances are conducted for evaluating the robust control algorithm,on the basis of a nonlinear vehicle simulation model with a magic tyre model.Results show that the established 2-DOF robust IMC method has better model tracking ability and a guaranteed level of robustness and robust performance,which can enhance the vehicle stability and handling,regardless of variations of the vehicle model parameters and the external crosswind interferences.Contradiction between performance and robustness of active steering control algorithm is solved and higher control performance with certain robustness to model uncertainties is obtained. 展开更多
关键词 active steering internal model control model tracking robust performance crosswind disturbances
下载PDF
Generalized Internal Model Robust Control for Active Front Steering Intervention 被引量:7
5
作者 WU Jian ZHAO Youqun +2 位作者 JI Xuewu LIU Yahui ZHANG Lipeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第2期285-293,共9页
Because of the tire nonlinearity and vehicle's parameters'uncertainties,robust control methods based on the worst cases,such as H_∞,μsynthesis,have been widely used in active front steering control,however,in orde... Because of the tire nonlinearity and vehicle's parameters'uncertainties,robust control methods based on the worst cases,such as H_∞,μsynthesis,have been widely used in active front steering control,however,in order to guarantee the stability of active front steering system(AFS)controller,the robust control is at the cost of performance so that the robust controller is a little conservative and has low performance for AFS control.In this paper,a generalized internal model robust control(GIMC)that can overcome the contradiction between performance and stability is used in the AFS control.In GIMC,the Youla parameterization is used in an improved way.And GIMC controller includes two sections:a high performance controller designed for the nominal vehicle model and a robust controller compensating the vehicle parameters'uncertainties and some external disturbances.Simulations of double lane change(DLC)maneuver and that of braking on split-μroad are conducted to compare the performance and stability of the GIMC control,the nominal performance PID controller and the H_∞controller.Simulation results show that the high nominal performance PID controller will be unstable under some extreme situations because of large vehicle's parameters variations,H_∞controller is conservative so that the performance is a little low,and only the GIMC controller overcomes the contradiction between performance and robustness,which can both ensure the stability of the AFS controller and guarantee the high performance of the AFS controller.Therefore,the GIMC method proposed for AFS can overcome some disadvantages of control methods used by current AFS system,that is,can solve the instability of PID or LQP control methods and the low performance of the standard H_∞controller. 展开更多
关键词 active front steering system generalized internal model robust control H_∞ optimization PID split-μ road
下载PDF
Improvement of precision for pendulous integrating gyro accelerometer via adaptive internal model control 被引量:1
6
作者 Xu Fengxia Xia Gang +2 位作者 Zeng Ming Sun Baoku Zhao Xuezeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第4期841-845,共5页
An adaptive internal mode control is proposed to eliminate effectively periodic disturbance with uncertain frequency caused by input error angle of PIGA (Pendulous Integrating Gyro Accelerometer). An adaptive algori... An adaptive internal mode control is proposed to eliminate effectively periodic disturbance with uncertain frequency caused by input error angle of PIGA (Pendulous Integrating Gyro Accelerometer). An adaptive algorithm with periodic disturbance frequency identification on line is applied and the internal model controller parameters are adjusted to eliminate disturbance. Then the convergence of this algorithm and the stability of the system are proved by the averaging method. Simulation results verify the proposed scheme can eliminate periodic disturbance and improve the test precision for PIGA effectively. 展开更多
关键词 PIGA periodic disturbance adaptive algorithm internal model control
下载PDF
Temperature Control Based on Fuzzy Logic Two-degree-of-freedom Smith Internal Model 被引量:4
7
作者 WANG Zhigang HE Meng 《Instrumentation》 2020年第2期1-8,共8页
According to the characteristics of the large time delay,nonlinearity and the great inertia of temperature control system in biomass pyrolysis reactor,a two-degree-of-freedom Smith internal model controller based on f... According to the characteristics of the large time delay,nonlinearity and the great inertia of temperature control system in biomass pyrolysis reactor,a two-degree-of-freedom Smith internal model controller based on fuzzy control is proposed.Firstly,the mathematical model of the temperature control system is established by using the step response method,and then the two-degree-of-freedom Smith internal model controller is designed,and the good tracking performance and disturbance suppression performance can be obtained by designing the set value tracking controller and interference rejection capability.Secondly,the fuzzy control algorithm is used to realize the on-line tuning of the control parameters of the two-degree-of-freedom Smith internal model algorithm.The simulation results show that,compared with the traditional internal model control,fuzzy internal model PID control and two-degree-of-freedom Smith internal model control,the algorithm proposed in this paper improves the influence of lag time on the control system,realizes the separation control of set point tracking and anti-jamming performance and the self-tuning of control parameters,and improves the control performance of the system. 展开更多
关键词 Smith Predictive Controller internal model Control Two Degrees of Freedom Fuzzy Control Algorithm
下载PDF
Synthetical Control of AGC/LPC System Based on Neural Networks Internal Model Control
8
作者 Hu He, Xiaodong Luan, Yikang Sun Information Engineering School, University of Science and Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2001年第1期75-77,共3页
One synthetical control method of AGC/LPC system based on intelligence control theory-neural networks internal model control method is presented. Genetic algorithm (GA) is applied to optimize the parameters of the neu... One synthetical control method of AGC/LPC system based on intelligence control theory-neural networks internal model control method is presented. Genetic algorithm (GA) is applied to optimize the parameters of the neural networks. Simulation results prove that this method is effective. 展开更多
关键词 hot strip rolling AGC LOOPER neural networks internal model control GA
下载PDF
An internal ballistic model of electromagnetic railgun based on PFN coupled with multi-physical field and experimental validation
9
作者 Benfeng Gu Haiyuan Li Baoming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期254-261,共8页
To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime... To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed. 展开更多
关键词 internal ballistic modeling Electromagnetic rail gun Multi-physics field coupling Experimental validation PFN
下载PDF
Average Current Control with Internal Model Control and Real-time Frequency Decoupling for Hybrid Energy Storage Systems in Microgrids 被引量:1
10
作者 Alejandro Latorre Wilmar Martinez Camilo A.Cortes 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第2期511-522,共12页
Among hybrid energy storage systems(HESSs),battery-ultracapacitor systems in active topology use DC/DC power converters for their operations.HESSs are part of the solutions designed to improve the operation of power s... Among hybrid energy storage systems(HESSs),battery-ultracapacitor systems in active topology use DC/DC power converters for their operations.HESSs are part of the solutions designed to improve the operation of power systems in different applications.In the residential microgrid applications,a multilevel control system is required to manage the available energy and interactions among the microgrid components.For this purpose,a rule-based power management system is designed,whose operation is validated in the simulation,and the performances of different controllers are compared to select the best strategy for the DC/DC converters.The average current control with internal model control and real-time frequency decoupling is proposed as the most suitable controller according to the contemplated performance parameters,allowing voltage regulation values close to 1%.The results are validated using real-time hardware-in-the-loop(HIL).These systems can be easily adjusted for other applications such as electric vehicles. 展开更多
关键词 internal model control energy management system(EMS) hybrid energy storage system(HESS) MICROGRIDS real-time frequency decoupling
原文传递
A High-order Internal Model Based Iterative Learning Control Scheme for Discrete Linear Time-varying Systems 被引量:6
11
作者 Wei Zhou Miao Yu De-Qing Huang 《International Journal of Automation and computing》 EI CSCD 2015年第3期330-336,共7页
In this paper, an iterative learning control algorithm is proposed for discrete linear time-varying systems to track iterationvarying desired trajectories. A high-order internal model(HOIM) is utilized to describe the... In this paper, an iterative learning control algorithm is proposed for discrete linear time-varying systems to track iterationvarying desired trajectories. A high-order internal model(HOIM) is utilized to describe the variation of desired trajectories in the iteration domain. In the sequel, the HOIM is incorporated into the design of learning gains. The learning convergence in the iteration axis can be guaranteed with rigorous proof. The simulation results with permanent magnet linear motors(PMLM) demonstrate that the proposed HOIM based approach yields good performance and achieves perfect tracking. 展开更多
关键词 Iterative learning control high-order internal model discrete linear time-varying systems iteration-varying desired tra-jectory
原文传递
Multi-loop adaptive internal model control based on a dynamic partial least squares model 被引量:3
12
作者 Zhao ZHAO Bin HU Jun LIANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2011年第3期190-200,共11页
A multi-loop adaptive internal model control (IMC) strategy based on a dynamic partial least squares (PLS) frame-work is proposed to account for plant model errors caused by slow aging,drift in operational conditions,... A multi-loop adaptive internal model control (IMC) strategy based on a dynamic partial least squares (PLS) frame-work is proposed to account for plant model errors caused by slow aging,drift in operational conditions,or environmental changes.Since PLS decomposition structure enables multi-loop controller design within latent spaces,a multivariable adaptive control scheme can be converted easily into several independent univariable control loops in the PLS space.In each latent subspace,once the model error exceeds a specific threshold,online adaptation rules are implemented separately to correct the plant model mismatch via a recursive least squares (RLS) algorithm.Because the IMC extracts the inverse of the minimum part of the internal model as its structure,the IMC controller is self-tuned by explicitly updating the parameters,which are parts of the internal model.Both parameter convergence and system stability are briefly analyzed,and proved to be effective.Finally,the proposed control scheme is tested and evaluated using a widely-used benchmark of a multi-input multi-output (MIMO) system with pure delay. 展开更多
关键词 Partial least squares (PLS) Adaptive internal model control (IMC) Recursive least squares (RLS)
原文传递
Novel power capture optimization based sensorless maximum power point tracking strategy and internal model controller for wind turbines systems driven SCIG
13
作者 Ali EL YAAKOUBI Kamal ATTARI +1 位作者 Adel ASSELMAN Abdelouahed DJEBLI 《Frontiers in Energy》 SCIE CSCD 2019年第4期742-756,共15页
Under the trends to using renewable energy sources as alternatives to the traditional ones,it is important to contribute to the fast growing development of these sources by using powerful soft computing methods.In thi... Under the trends to using renewable energy sources as alternatives to the traditional ones,it is important to contribute to the fast growing development of these sources by using powerful soft computing methods.In this context,this paper introduces a novel structure to optimize and control the energy produced from a variable speed wind turbine which is based on a squirrel cage induction generator(SCIG)and connected to the grid.The optimization strategy of the harvested power from the wind is realized by a maximum power point tracking(MPPT)algorithm based on fuzzy logic,and the control strategy of the generator is implemented by means of an internal model(IM)controller.Three IM controllers are incorporated in the vector control technique,as an alternative to the proportional integral(PI)controller,to implement the proposed optimization strategy.The MPPT in conjunction with the IM controller is proposed as an alternative to the traditional tip speed ratio(TSR)technique,to avoid any disturbance such as wind speed measurement and wind turbine(WT)characteristic uncertainties.Based on the simulation results of a six KW-WECS model in Matlab/Simulink,the presented control system topology is reliable and keeps the system operation around the desired response. 展开更多
关键词 power optimization wind energy conversion system maximum power point tracking(MPPT) fuzzy logic internal model(IM)controller
原文传递
Two fuzzy internal model control methods for nonlinear uncertain systems
14
作者 Amira Aydi Mohamed Djemel Mohamed Chtourou 《International Journal of Intelligent Computing and Cybernetics》 EI 2017年第2期223-240,共18页
Purpose-The purpose of this paper is to use the internal model control to deal with nonlinear stable systems affected by parametric uncertainties.Design/methodology/approach-The dynamics of a considered system are app... Purpose-The purpose of this paper is to use the internal model control to deal with nonlinear stable systems affected by parametric uncertainties.Design/methodology/approach-The dynamics of a considered system are approximated by a Takagi-Sugeno fuzzy model.The parameters of the fuzzy rules premises are determined manually.However,the parameters of the fuzzy rules conclusions are updated using the descent gradient method under inequality constraints in order to ensure the stability of each local model.In fact,without making these constraints the training algorithm can procure one or several unstable local models even if the desired accuracy in the training step is achieved.The considered robust control approach is the internal model.It is synthesized based on the Takagi-Sugeno fuzzy model.Two control strategies are considered.The first one is based on the parallel distribution compensation principle.It consists in associating an internal model control for each local model.However,for the second strategy,the control law is computed based on the global Takagi-Sugeno fuzzy model.Findings-According to the simulation results,the stability of all local models is obtained and the proposed fuzzy internal model control approaches ensure robustness against parametric uncertainties.Originality/value-This paper introduces a method for the identification of fuzzy model parameters ensuring the stability of all local models.Using the resulting fuzzy model,two fuzzy internal model control designs are presented. 展开更多
关键词 Robust control UNCERTAINTIES Descent gradient method Fuzzy modeling internal model control Nonlinear systems
原文传递
Review and recent development of internal model design
15
作者 Zhiyong Chen 《Journal of Control and Decision》 EI 2018年第1期94-114,共21页
Robust output regulation is a controller design theory for achieving reference tracking and disturbance rejection as well as system stability.The main feature of the theory is that the reference and/or disturbance sig... Robust output regulation is a controller design theory for achieving reference tracking and disturbance rejection as well as system stability.The main feature of the theory is that the reference and/or disturbance signals have explicit structural description,especially by an exosystem.By decoding this structural information,the desired steady state/input of the system can be completely characterised,albeit not measurable or implementable due to system uncertainty.The steady state/input description simply copies the exosystem dynamics for simple systems,however,it relies on more complicated steady-state generators in most non-linear scenarios.Once the steady state/input is characterised,it can be estimated by an internal model.Proper construction of internal model can well compensate for the desired steady state/input resulting in a stabilisation problem about an equilibrium point.The control objective is achieved if such a stabilisation problem is solved.This paper does not ambitiously aim at a complete overview picture of the three decade development of output regulation theory.It attempts to show a small trail in the garden of vast collections of output regulation results that may lead the audience from simple to advanced internal model design techniques.In particular,it reviews the simple PID structure,the p-copy internal model for linear systems,various internal models for non-linear systems,and the recent development of generalised internal model to accommodate adaptive scheme. 展开更多
关键词 internal model output regulation non-linear systems steady-state generator PID
原文传递
Optimized Model Based Controller with Model Plant Mismatch for NMP Mitigation in Boost Converter
16
作者 R.Prasanna Uma Govindarajan NSBhuvaneswari 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1961-1979,共19页
In this paper,an optimized Genetic Algorithm(GA)based internal model controller-proportional integral derivative(IMC-PID)controller has been designed for the control variable to output variable transfer function of dc... In this paper,an optimized Genetic Algorithm(GA)based internal model controller-proportional integral derivative(IMC-PID)controller has been designed for the control variable to output variable transfer function of dc-dc boost converter to mitigate the effect of non-minimum phase(NMP)behavior due to the presence of a right-half plane zero(RHPZ).This RHPZ limits the dynamic performance of the converter and leads to internal instability.The IMC PID is a streamlined counterpart of the standard feedback controller and easily achieves optimal set point and load change performance with a single filter tuning parameterλ.Also,this paper addresses the influences of the model-based controller with model plant mismatch on the closed-loop control.The conventional IMC PID design is realized as an optimization problem with a resilient controller being determined through a genetic algorithm.Computed results suggested that GA–IMC PID coheres to the optimum designs with a fast convergence rate and outperforms conventional IMC PID controllers. 展开更多
关键词 Boost converter non-minimum phase internal model control dynamic controller
下载PDF
DYNAMICS MODEL AND SIMULATION OF FLAT VALVE SYSTEM OF INTERNAL COMBUSTION WATER PUMP 被引量:39
17
作者 Zhang Hongxin Zhang Tiezhu +2 位作者 Wang Yushun Zhao Hong Huo Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第3期411-414,共4页
The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase s... The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase step when outlet valve or inlet valve opens, but is more gently in other time; The volume efficiency is influenced by the output pressure slightly, and decreases as the working rotational speed increases; When the inherent frequency of the valves is integer multiple of the working frequency, the volume efficiency of system will decrease evidently. 展开更多
关键词 Check valve Simulation Dynamics model internal combustion water pump(ICWP)
下载PDF
Modeling of microstructure evolution of AZ80 magnesium alloy during hot working process using a unified internal state variable method 被引量:4
18
作者 Zexing Su Chaoyang Sun +2 位作者 Mingjia Wang Lingyun Qian Xintong Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第1期299-313,共15页
In this paper, a unified internal state variable(ISV) model for predicting microstructure evolution during hot working process of AZ80 magnesium alloy was developed. A novel aspect of the proposed model is that the in... In this paper, a unified internal state variable(ISV) model for predicting microstructure evolution during hot working process of AZ80 magnesium alloy was developed. A novel aspect of the proposed model is that the interactive effects of material hardening, recovery and dynamic recrystallization(DRX) on the characteristic deformation behavior were considered by incorporating the evolution laws of viscoplastic flow, dislocation activities, DRX nucleation and boundary migration in a coupled manner. The model parameters were calibrated based on the experimental data analysis and genetic algorithm(GA) based objective optimization. The predicted flow stress, DRX fraction and average grain size match well with experimental results. The proposed model was embedded in the finite element(FE) software DEFORM-3 D via user defined subroutine to simulate the hot compression and equal channel angular extrusion(ECAE) processes. The heterogeneous microstructure distributions at different deformation zones and the dislocation density evolution with competitive deformation mechanisms were captured.This study can provide a theoretical solution for the hot working problems of magnesium alloy. 展开更多
关键词 AZ80 magnesium alloy internal state variable model Microstructure evolution Dynamic recrystallization Hot working process Finite element simulation
下载PDF
Model reduction and active control of flexible beam using internal balance technique
19
作者 谢永 赵童 蔡国平 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第8期1009-1018,共10页
The internal balance technique is effective for the model reduction in flexible structures, especially the ones with dense frequencies. However, due to the difficulty in extracting the internal balance modal coordinat... The internal balance technique is effective for the model reduction in flexible structures, especially the ones with dense frequencies. However, due to the difficulty in extracting the internal balance modal coordinates from the physical sensor readings, research on this topic has been mostly theoretical so far, and little has been done in experiments or engineering applications. This paper studies the internal balance method theoretically as well as experimentally and designs an active controller based on the reduction model. The research works on a digital signal processor (DSP) TMS320F2812- based experiment system with a flexible beam and proposes an approximate approach to access the internal balance modal coordinates. The simulation and test results have shown that the proposed approach is feasible and effective, and the designed controller is successful in restraining the beam vibration. 展开更多
关键词 flexible beam internal balance model reduction active control EXPERIMENT
下载PDF
An Efficient Three-Dimensional Coupled Normal Mode Model and Its Application to Internal Solitary Wave Problems 被引量:1
20
作者 张泽众 骆文于 张仁和 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第8期36-39,共4页
We present an efficient three-dimensional coupled-mode model based on the Fourier synthesis technique. In principle, this model is a one-way model, and hence provides satisfactory accuracy for problems where the forwa... We present an efficient three-dimensional coupled-mode model based on the Fourier synthesis technique. In principle, this model is a one-way model, and hence provides satisfactory accuracy for problems where the forward scattering dominates. At the same time, this model provides an efficiency gain of an order of magnitude or more over two-way coupled-mode models. This model can be applied to three-dimensional range-dependent problems with a slowly varying bathymetry or internal waves. A numerical example of the latter is demonstrated in this work. Comparisons of both accuracy and efficiency between the present model and a benchmark model are also provided. 展开更多
关键词 An Efficient Three-Dimensional Coupled Normal Mode model and Its Application to internal Solitary Wave Problems
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部