In this paper,an optimized Genetic Algorithm(GA)based internal model controller-proportional integral derivative(IMC-PID)controller has been designed for the control variable to output variable transfer function of dc...In this paper,an optimized Genetic Algorithm(GA)based internal model controller-proportional integral derivative(IMC-PID)controller has been designed for the control variable to output variable transfer function of dc-dc boost converter to mitigate the effect of non-minimum phase(NMP)behavior due to the presence of a right-half plane zero(RHPZ).This RHPZ limits the dynamic performance of the converter and leads to internal instability.The IMC PID is a streamlined counterpart of the standard feedback controller and easily achieves optimal set point and load change performance with a single filter tuning parameterλ.Also,this paper addresses the influences of the model-based controller with model plant mismatch on the closed-loop control.The conventional IMC PID design is realized as an optimization problem with a resilient controller being determined through a genetic algorithm.Computed results suggested that GA–IMC PID coheres to the optimum designs with a fast convergence rate and outperforms conventional IMC PID controllers.展开更多
Interacting The highest storage capacity of a circular tank makes it pop-ular in process industries.Because of the varying surface area of the cross-sec-tions of the tank,this two-tank level system has nonlinear chara...Interacting The highest storage capacity of a circular tank makes it pop-ular in process industries.Because of the varying surface area of the cross-sec-tions of the tank,this two-tank level system has nonlinear characteristics.Controlling theflow rate of liquid is one of the most difficult challenges in the production process.This proposed effort is critical in preventing time delays and errors by managing thefluid level.Several scholars have explored and explored ways to reduce the problem of nonlinearity,but their techniques have not yielded better results.Different types of controllers with various techniques are implemented by the proposed system.Sliding Mode Controller(SMC)with Fractional Order PID Controller based on Intelligent Adaptive Neuro-Fuzzy Infer-ence System(ANFIS)is a novel technique for liquid level regulation in an inter-connected spherical tank system to avoid interferences and achieve better performance in comparison of rise time,settling time,and overshoot decrease.Evaluating the simulated results acquired by the controller yields the efficiency of the proposed system.The simulated results were produced using MATLAB 2018 and the FOMCON toolbox.Finally,the performance of the conventional controller(FOPID,PID-SMC)and proposed ANFIS based SMC-FOPID control-lers are compared and analyzed the performance indices.展开更多
In this paper,a multi-loop internal model control(IMC) scheme in conjunction with feed-forward strategy based on the dynamic partial least squares(DyPLS) framework is proposed.Unlike the traditional methods to decoupl...In this paper,a multi-loop internal model control(IMC) scheme in conjunction with feed-forward strategy based on the dynamic partial least squares(DyPLS) framework is proposed.Unlike the traditional methods to decouple multi-input multi-output(MIMO) systems,the DyPLS framework automatically decomposes the MIMO process into a multi-loop system in the PLS subspace in the modeling stage.The dynamic filters with identical structure are used to build the dynamic PLS model,which retains the orthogonality among the latent variables.To address the model mismatch problem,an off-line least squares method is applied to obtain a set of optimal filter parameters in each latent space.Without losing the merits of model-based control,a simple and easy-tuned IMC structure is readily carried over to the dynamic PLS control framework.In addition,by projecting the measurable disturbance into the latent subspace,a multi-loop feed-forward control is yielded to achieve better performance for disturbance rejection.Simulation results of a distillation column are used to further demonstrate this new strategy outperforms conventional control schemes in servo behavior and disturbance rejection.展开更多
To resolve the response delay and overshoot problems of intelligent vehicles facing emergency lane-changing due to proportional-integral-differential(PID)parameter variation,an active steering control method based on ...To resolve the response delay and overshoot problems of intelligent vehicles facing emergency lane-changing due to proportional-integral-differential(PID)parameter variation,an active steering control method based on Convolutional Neural Network and PID(CNNPID)algorithm is constructed.First,a steering control model based on normal distribution probability function,steady constant radius steering,and instantaneous lane-change-based active for straight and curved roads is established.Second,based on the active steering control model,a three-dimensional constraint-based fifth-order polynomial equation lane-change path is designed to address the stability problem with supersaturation and sideslip due to emergency lane changing.In addition,a hierarchical CNNPID Controller is constructed which includes two layers to avoid collisions facing emergency lane changing,namely,the lane change path tracking PID control layer and the CNN control performance optimization layer.The scaled conjugate gradient backpropagation-based forward propagation control law is designed to optimize the PID control performance based on input parameters,and the elastic backpropagation-based module is adopted for weight correction.Finally,comparison studies and simulation/real vehicle test results are presented to demonstrate the effectiveness,significance,and advantages of the proposed controller.展开更多
Because of vehicle's external disturbances and model uncertainties,robust control algorithms have obtained popularity in vehicle stability control.The robust control usually gives up performance in order to guarantee...Because of vehicle's external disturbances and model uncertainties,robust control algorithms have obtained popularity in vehicle stability control.The robust control usually gives up performance in order to guarantee the robustness of the control algorithm,therefore an improved robust internal model control(IMC) algorithm blending model tracking and internal model control is put forward for active steering system in order to reach high performance of yaw rate tracking with certain robustness.The proposed algorithm inherits the good model tracking ability of the IMC control and guarantees robustness to model uncertainties.In order to separate the design process of model tracking from the robustness design process,the improved 2 degree of freedom(DOF) robust internal model controller structure is given from the standard Youla parameterization.Simulations of double lane change maneuver and those of crosswind disturbances are conducted for evaluating the robust control algorithm,on the basis of a nonlinear vehicle simulation model with a magic tyre model.Results show that the established 2-DOF robust IMC method has better model tracking ability and a guaranteed level of robustness and robust performance,which can enhance the vehicle stability and handling,regardless of variations of the vehicle model parameters and the external crosswind interferences.Contradiction between performance and robustness of active steering control algorithm is solved and higher control performance with certain robustness to model uncertainties is obtained.展开更多
By combining the Back-Propagation (BP) neural network with conventional proportional Integral Derivative (PID) controller, a new temperature control strategy of the export steam in supercritical electric power pla...By combining the Back-Propagation (BP) neural network with conventional proportional Integral Derivative (PID) controller, a new temperature control strategy of the export steam in supercritical electric power plant is put forward. This scheme can effectively overcome the large time delay, inertia of the export steam and the influencee of object in varying operational parameters. Thus excellent control quality is obtaitud. The present paper describes the development and application of neural network based controller to control the temperature of the boiler's export steam. Through simulation in various situations, it validates that the control quality of this control system is apparently superior to the conventional PID control system.展开更多
This paper proposes a design of internal model control systems for process with delay by using support vector regression(SVR).The proposed system fully uses the excellent nonlinear estimation performance of SVR with t...This paper proposes a design of internal model control systems for process with delay by using support vector regression(SVR).The proposed system fully uses the excellent nonlinear estimation performance of SVR with the structural risk minimization principle.Closed-system stability and steady error are analyzed for the existence of modeling errors.The simulations show that the proposed control systems have the better control performance than that by neural networks in the cases of the training samples with small size and noises.展开更多
Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system...Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system stability will be affected by the performance of wind power plants,especially in the event of a fault.In this paper,the improvement of the dynamic stability in power system equipped by wind farm is examined through the supplementary controller design in the high voltage direct current(HVDC)based on voltage source converter(VSC)transmission system.In this regard,impacts of the VSC HVDC system and wind farm on the improvement of system stability are considered.Also,an algorithm based on controllability(observability)concept is proposed to select most appropriate and effective coupling between inputs-outputs(IO)signals of system in different work conditions.The selected coupling is used to apply damping controller signal.Finally,a fractional order PID controller(FO-PID)based on exchange market algorithm(EMA)is designed as damping controller.The analysis of the results shows that the wind farm does not directly contribute to the improvement of the dynamic stability of power system.However,it can increase the controllability of the oscillatory mode and improve the performance of the supplementary controller.展开更多
According to the characteristics of the large time delay,nonlinearity and the great inertia of temperature control system in biomass pyrolysis reactor,a two-degree-of-freedom Smith internal model controller based on f...According to the characteristics of the large time delay,nonlinearity and the great inertia of temperature control system in biomass pyrolysis reactor,a two-degree-of-freedom Smith internal model controller based on fuzzy control is proposed.Firstly,the mathematical model of the temperature control system is established by using the step response method,and then the two-degree-of-freedom Smith internal model controller is designed,and the good tracking performance and disturbance suppression performance can be obtained by designing the set value tracking controller and interference rejection capability.Secondly,the fuzzy control algorithm is used to realize the on-line tuning of the control parameters of the two-degree-of-freedom Smith internal model algorithm.The simulation results show that,compared with the traditional internal model control,fuzzy internal model PID control and two-degree-of-freedom Smith internal model control,the algorithm proposed in this paper improves the influence of lag time on the control system,realizes the separation control of set point tracking and anti-jamming performance and the self-tuning of control parameters,and improves the control performance of the system.展开更多
A novel approach to design Internal Model Controller(IMC)is proposed in this paper directly from measuredinput and output plant data,which are assumed to becontaminated by measurement noise.In order to avoidthe compli...A novel approach to design Internal Model Controller(IMC)is proposed in this paper directly from measuredinput and output plant data,which are assumed to becontaminated by measurement noise.In order to avoidthe complicated structure-identification problem inmost cases,two Finite Impulse Response(FIR)modelsare taken to represent the plant model and the internalmodel controller respectively.Taking account of mea-surement noise both in the plant input and its output,anESD based Total Least Squares(TLS)solution is appliedfor the unbiased identification of the plant model and itsinverse model,the latter constitutes the internal modelcontroller according to the principle that the internalmodel controller approximates the inverse dynamics ofthe plant model.Simulations are given for a testifica-tion.展开更多
One synthetical control method of AGC/LPC system based on intelligence control theory-neural networks internal model control method is presented. Genetic algorithm (GA) is applied to optimize the parameters of the neu...One synthetical control method of AGC/LPC system based on intelligence control theory-neural networks internal model control method is presented. Genetic algorithm (GA) is applied to optimize the parameters of the neural networks. Simulation results prove that this method is effective.展开更多
This paper discusses the model-based predictive controller design of networked nonlinear systems with communica- tion delay and data loss. Based on the analysis of the closed-loop networked predictive control systems,...This paper discusses the model-based predictive controller design of networked nonlinear systems with communica- tion delay and data loss. Based on the analysis of the closed-loop networked predictive control systems, the model-based networked predictive control strategy can compensate for communication delay and data loss in an active way. The designed model-based predictive controller can also guarantee the stability of the closed-loop networked system. The simulation re- suits demonstrate the feasibility and efficacy of the proposed model-based predictive controller design scheme.展开更多
A modified two-degrees-of-freedom( M-TDOF) internal model control( IMC) method is proposed for non-square systems with multiple time delays and right-half-plane( RHP) zeros. In this method,pseudo-inverse is introduced...A modified two-degrees-of-freedom( M-TDOF) internal model control( IMC) method is proposed for non-square systems with multiple time delays and right-half-plane( RHP) zeros. In this method,pseudo-inverse is introduced to design the internal model controller,and a desired closed-loop transfer function is designed to eliminate the unrealizable factors of the derived controller. In addition,set-point tracking and load-disturbance rejection of each process are separately controlled by two controllers. The simulation results show that in addition to high decoupling performance and robustness,the proposed control method also effectively improves loaddisturbance rejection and simultaneously optimizes the input tracking performance and disturbance rejection performance by selecting the parameters of controllers. Furthermore,the higher tolerance of model mismatch is achieved in this paper.展开更多
For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a tra...For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a traditional PID controller, a decoupling compensator and a feedforward compensator for the unmodeled dynamics. The parameters of such controller is selected based on the generalized minimum variance control law. The unmodeled dynamics is estimated and compensated by neural networks, a switching mechanism is introduced to improve tracking performance, then a nonlinear decoupling PID control algorithm is proposed. All signals in such switching system are globally bounded and the tracking error is convergent. Simulations show effectiveness of the algorithm.展开更多
文摘In this paper,an optimized Genetic Algorithm(GA)based internal model controller-proportional integral derivative(IMC-PID)controller has been designed for the control variable to output variable transfer function of dc-dc boost converter to mitigate the effect of non-minimum phase(NMP)behavior due to the presence of a right-half plane zero(RHPZ).This RHPZ limits the dynamic performance of the converter and leads to internal instability.The IMC PID is a streamlined counterpart of the standard feedback controller and easily achieves optimal set point and load change performance with a single filter tuning parameterλ.Also,this paper addresses the influences of the model-based controller with model plant mismatch on the closed-loop control.The conventional IMC PID design is realized as an optimization problem with a resilient controller being determined through a genetic algorithm.Computed results suggested that GA–IMC PID coheres to the optimum designs with a fast convergence rate and outperforms conventional IMC PID controllers.
文摘Interacting The highest storage capacity of a circular tank makes it pop-ular in process industries.Because of the varying surface area of the cross-sec-tions of the tank,this two-tank level system has nonlinear characteristics.Controlling theflow rate of liquid is one of the most difficult challenges in the production process.This proposed effort is critical in preventing time delays and errors by managing thefluid level.Several scholars have explored and explored ways to reduce the problem of nonlinearity,but their techniques have not yielded better results.Different types of controllers with various techniques are implemented by the proposed system.Sliding Mode Controller(SMC)with Fractional Order PID Controller based on Intelligent Adaptive Neuro-Fuzzy Infer-ence System(ANFIS)is a novel technique for liquid level regulation in an inter-connected spherical tank system to avoid interferences and achieve better performance in comparison of rise time,settling time,and overshoot decrease.Evaluating the simulated results acquired by the controller yields the efficiency of the proposed system.The simulated results were produced using MATLAB 2018 and the FOMCON toolbox.Finally,the performance of the conventional controller(FOPID,PID-SMC)and proposed ANFIS based SMC-FOPID control-lers are compared and analyzed the performance indices.
基金Supported by the National Natural Science Foundation of China(60574047) the National High Technology Research and Development Program of China(2007AA04Z168 2009AA04Z154) the Research Fund for the Doctoral Program of Higher Education in China(20050335018)
文摘In this paper,a multi-loop internal model control(IMC) scheme in conjunction with feed-forward strategy based on the dynamic partial least squares(DyPLS) framework is proposed.Unlike the traditional methods to decouple multi-input multi-output(MIMO) systems,the DyPLS framework automatically decomposes the MIMO process into a multi-loop system in the PLS subspace in the modeling stage.The dynamic filters with identical structure are used to build the dynamic PLS model,which retains the orthogonality among the latent variables.To address the model mismatch problem,an off-line least squares method is applied to obtain a set of optimal filter parameters in each latent space.Without losing the merits of model-based control,a simple and easy-tuned IMC structure is readily carried over to the dynamic PLS control framework.In addition,by projecting the measurable disturbance into the latent subspace,a multi-loop feed-forward control is yielded to achieve better performance for disturbance rejection.Simulation results of a distillation column are used to further demonstrate this new strategy outperforms conventional control schemes in servo behavior and disturbance rejection.
基金Supported by National Key R&D Program of China(Grant No.2018YFB1600500)Jiangsu Provincial Postgraduate Research&Practice Innovation Program of(Grant No.KYCX22_3673).
文摘To resolve the response delay and overshoot problems of intelligent vehicles facing emergency lane-changing due to proportional-integral-differential(PID)parameter variation,an active steering control method based on Convolutional Neural Network and PID(CNNPID)algorithm is constructed.First,a steering control model based on normal distribution probability function,steady constant radius steering,and instantaneous lane-change-based active for straight and curved roads is established.Second,based on the active steering control model,a three-dimensional constraint-based fifth-order polynomial equation lane-change path is designed to address the stability problem with supersaturation and sideslip due to emergency lane changing.In addition,a hierarchical CNNPID Controller is constructed which includes two layers to avoid collisions facing emergency lane changing,namely,the lane change path tracking PID control layer and the CNN control performance optimization layer.The scaled conjugate gradient backpropagation-based forward propagation control law is designed to optimize the PID control performance based on input parameters,and the elastic backpropagation-based module is adopted for weight correction.Finally,comparison studies and simulation/real vehicle test results are presented to demonstrate the effectiveness,significance,and advantages of the proposed controller.
基金Supported by National Natural Science Foundation of China(Grant No.51375009)PhD Research Foundation of Liaocheng University,China(Grant No.318051523)Tsinghua University Initiative Scientific Research Program,China
文摘Because of vehicle's external disturbances and model uncertainties,robust control algorithms have obtained popularity in vehicle stability control.The robust control usually gives up performance in order to guarantee the robustness of the control algorithm,therefore an improved robust internal model control(IMC) algorithm blending model tracking and internal model control is put forward for active steering system in order to reach high performance of yaw rate tracking with certain robustness.The proposed algorithm inherits the good model tracking ability of the IMC control and guarantees robustness to model uncertainties.In order to separate the design process of model tracking from the robustness design process,the improved 2 degree of freedom(DOF) robust internal model controller structure is given from the standard Youla parameterization.Simulations of double lane change maneuver and those of crosswind disturbances are conducted for evaluating the robust control algorithm,on the basis of a nonlinear vehicle simulation model with a magic tyre model.Results show that the established 2-DOF robust IMC method has better model tracking ability and a guaranteed level of robustness and robust performance,which can enhance the vehicle stability and handling,regardless of variations of the vehicle model parameters and the external crosswind interferences.Contradiction between performance and robustness of active steering control algorithm is solved and higher control performance with certain robustness to model uncertainties is obtained.
基金supported by the project of "SDUST Qunxing Program"(No.qx0902075)
文摘By combining the Back-Propagation (BP) neural network with conventional proportional Integral Derivative (PID) controller, a new temperature control strategy of the export steam in supercritical electric power plant is put forward. This scheme can effectively overcome the large time delay, inertia of the export steam and the influencee of object in varying operational parameters. Thus excellent control quality is obtaitud. The present paper describes the development and application of neural network based controller to control the temperature of the boiler's export steam. Through simulation in various situations, it validates that the control quality of this control system is apparently superior to the conventional PID control system.
文摘This paper proposes a design of internal model control systems for process with delay by using support vector regression(SVR).The proposed system fully uses the excellent nonlinear estimation performance of SVR with the structural risk minimization principle.Closed-system stability and steady error are analyzed for the existence of modeling errors.The simulations show that the proposed control systems have the better control performance than that by neural networks in the cases of the training samples with small size and noises.
文摘Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system stability will be affected by the performance of wind power plants,especially in the event of a fault.In this paper,the improvement of the dynamic stability in power system equipped by wind farm is examined through the supplementary controller design in the high voltage direct current(HVDC)based on voltage source converter(VSC)transmission system.In this regard,impacts of the VSC HVDC system and wind farm on the improvement of system stability are considered.Also,an algorithm based on controllability(observability)concept is proposed to select most appropriate and effective coupling between inputs-outputs(IO)signals of system in different work conditions.The selected coupling is used to apply damping controller signal.Finally,a fractional order PID controller(FO-PID)based on exchange market algorithm(EMA)is designed as damping controller.The analysis of the results shows that the wind farm does not directly contribute to the improvement of the dynamic stability of power system.However,it can increase the controllability of the oscillatory mode and improve the performance of the supplementary controller.
基金financial support was given by Tianjin Technical Expert Project(19JCTPJC59300)
文摘According to the characteristics of the large time delay,nonlinearity and the great inertia of temperature control system in biomass pyrolysis reactor,a two-degree-of-freedom Smith internal model controller based on fuzzy control is proposed.Firstly,the mathematical model of the temperature control system is established by using the step response method,and then the two-degree-of-freedom Smith internal model controller is designed,and the good tracking performance and disturbance suppression performance can be obtained by designing the set value tracking controller and interference rejection capability.Secondly,the fuzzy control algorithm is used to realize the on-line tuning of the control parameters of the two-degree-of-freedom Smith internal model algorithm.The simulation results show that,compared with the traditional internal model control,fuzzy internal model PID control and two-degree-of-freedom Smith internal model control,the algorithm proposed in this paper improves the influence of lag time on the control system,realizes the separation control of set point tracking and anti-jamming performance and the self-tuning of control parameters,and improves the control performance of the system.
文摘A novel approach to design Internal Model Controller(IMC)is proposed in this paper directly from measuredinput and output plant data,which are assumed to becontaminated by measurement noise.In order to avoidthe complicated structure-identification problem inmost cases,two Finite Impulse Response(FIR)modelsare taken to represent the plant model and the internalmodel controller respectively.Taking account of mea-surement noise both in the plant input and its output,anESD based Total Least Squares(TLS)solution is appliedfor the unbiased identification of the plant model and itsinverse model,the latter constitutes the internal modelcontroller according to the principle that the internalmodel controller approximates the inverse dynamics ofthe plant model.Simulations are given for a testifica-tion.
文摘One synthetical control method of AGC/LPC system based on intelligence control theory-neural networks internal model control method is presented. Genetic algorithm (GA) is applied to optimize the parameters of the neural networks. Simulation results prove that this method is effective.
基金Project supported by the Key Program for the National Natural Science Foundation of China(Grant No.61333003)the General Program for the National Natural Science Foundation of China(Grant No.61273104)
文摘This paper discusses the model-based predictive controller design of networked nonlinear systems with communica- tion delay and data loss. Based on the analysis of the closed-loop networked predictive control systems, the model-based networked predictive control strategy can compensate for communication delay and data loss in an active way. The designed model-based predictive controller can also guarantee the stability of the closed-loop networked system. The simulation re- suits demonstrate the feasibility and efficacy of the proposed model-based predictive controller design scheme.
基金Sponsored by the Fundamental Research Funds for the Central Universities(Grant No.N110304008)the National Natural Science Foundation of China(Grant No.61374137)
文摘A modified two-degrees-of-freedom( M-TDOF) internal model control( IMC) method is proposed for non-square systems with multiple time delays and right-half-plane( RHP) zeros. In this method,pseudo-inverse is introduced to design the internal model controller,and a desired closed-loop transfer function is designed to eliminate the unrealizable factors of the derived controller. In addition,set-point tracking and load-disturbance rejection of each process are separately controlled by two controllers. The simulation results show that in addition to high decoupling performance and robustness,the proposed control method also effectively improves loaddisturbance rejection and simultaneously optimizes the input tracking performance and disturbance rejection performance by selecting the parameters of controllers. Furthermore,the higher tolerance of model mismatch is achieved in this paper.
基金This paper is supported by the National Foundamental Research Program of China (No. 2002CB312201), the State Key Program of NationalNatural Science of China (No. 60534010), the Funds for Creative Research Groups of China (No. 60521003), and Program for Changjiang Scholarsand Innovative Research Team in University (No. IRT0421).
文摘For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a traditional PID controller, a decoupling compensator and a feedforward compensator for the unmodeled dynamics. The parameters of such controller is selected based on the generalized minimum variance control law. The unmodeled dynamics is estimated and compensated by neural networks, a switching mechanism is introduced to improve tracking performance, then a nonlinear decoupling PID control algorithm is proposed. All signals in such switching system are globally bounded and the tracking error is convergent. Simulations show effectiveness of the algorithm.