期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
High damping in Fe-Ga-La alloys:Phenomenological model for magneto-mechanical hysteresis damping and experiment
1
作者 Meng Sun Anatoly Balagurov +4 位作者 Ivan Bobrikov Xianping Wang Wen Wen Igor S.Golovin Qianfeng Fang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第13期69-80,共12页
Ferromagnetic high damping(FHA)alloys with a wide temperature range from-150℃to 300℃have unique application value in extreme environments.In the present work,the damping behaviors of Fe-21 Ga-xLa(x=0.12 wt.%,0.24 wt... Ferromagnetic high damping(FHA)alloys with a wide temperature range from-150℃to 300℃have unique application value in extreme environments.In the present work,the damping behaviors of Fe-21 Ga-xLa(x=0.12 wt.%,0.24 wt.%,0.47 wt.%,1.18 wt.%,and 2.33 wt.%La)alloys have been studied in detail,and a new phenomenological model has been proposed.With the increase of La content,the Laves phase(LaGa_(2))in the matrix increases gradually,and the resistance opposing the domain movement increases as well.Combined with the results of synchrotron radiation X-ray diffraction,neutron diffraction,and magnetic domain observation,the resistance mainly comes from three parts:the average stress related to the lattice distortion of the matrix,the average stress related to the increasing area energy of domain walls(DWs),and the ave rage stress related to the increasing demagnetization energy induced by the Laves phase.Different from the traditional method of reducing internal stress through annealing to improve the damping capacity,the proper internal stress barriers are necessary to Barkhausen jumps to dissipate energy.Therefore,proper doping to balance resistance and mobility of DWs is a reliable way to improve damping capacity.Meanwhile,for Fe-Al and Fe-Cr based Alloys,the new model also has a good fitting effect.This study provides a theoretical and experimental reference for improving the functional properties of ferromagnetic alloys. 展开更多
关键词 Magneto-mechanical hysteresis damping Laves phase(LaGa_(2)) internal stress distribution Neutron-diffraction patterns Domain walls
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部