In recent years,the Industrial Internet and Industry 4.0 came into being.With the development of modern industrial intelligent manufacturing technology,digital twins,Web3 and many other digital entity applications are...In recent years,the Industrial Internet and Industry 4.0 came into being.With the development of modern industrial intelligent manufacturing technology,digital twins,Web3 and many other digital entity applications are also proposed.These applications apply architectures such as distributed learning,resource sharing,and arithmetic trading,which make high demands on identity authentication,asset authentication,resource addressing,and service location.Therefore,an efficient,secure,and trustworthy Industrial Internet identity resolution system is needed.However,most of the traditional identity resolution systems follow DNS architecture or tree structure,which has the risk of a single point of failure and DDoS attack.And they cannot guarantee the security and privacy of digital identity,personal assets,and device information.So we consider a decentralized approach for identity management,identity authentication,and asset verification.In this paper,we propose a distributed trusted active identity resolution system based on the inter-planetary file system(IPFS)and non-fungible token(NFT),which can provide distributed identity resolution services.And we have designed the system architecture,identity service process,load balancing strategy and smart contract service.In addition,we use Jmeter to verify the performance of the system,and the results show that the system has good high concurrent performance and robustness.展开更多
Industrial Internet combines the industrial system with Internet connectivity to build a new manufacturing and service system covering the entire industry chain and value chain.Its highly heterogeneous network structu...Industrial Internet combines the industrial system with Internet connectivity to build a new manufacturing and service system covering the entire industry chain and value chain.Its highly heterogeneous network structure and diversified application requirements call for the applying of network slicing technology.Guaranteeing robust network slicing is essential for Industrial Internet,but it faces the challenge of complex slice topologies caused by the intricate interaction relationships among Network Functions(NFs)composing the slice.Existing works have not concerned the strengthening problem of industrial network slicing regarding its complex network properties.Towards this end,we aim to study this issue by intelligently selecting a subset of most valuable NFs with the minimum cost to satisfy the strengthening requirements.State-of-the-art AlphaGo series of algorithms and the advanced graph neural network technology are combined to build the solution.Simulation results demonstrate the superior performance of our scheme compared to the benchmark schemes.展开更多
Green and low-carbon is a new development model that seeks balance between environmental sustainability and high economic growth.If explainable and available carbon emission data can be accurately obtained,it will hel...Green and low-carbon is a new development model that seeks balance between environmental sustainability and high economic growth.If explainable and available carbon emission data can be accurately obtained,it will help policy regulators and enterprise managers to more accurately implement this development strategy.A lot of research has been carried out,but it is still a difficult problem that how to accommodate and adapt the complex carbon emission data computing models and factor libraries developed by different regions,different industries and different enterprises.Meanwhile,with the rapid development of the Industrial Internet,it has not only been used for the supply chain optimization and intelligent scheduling of the manufacturing industry,but also been used by more and more industries as an important way of digital transformation.Especially in China,the Industrial Internet identification and resolution system is becoming an important digital infrastructure to uniquely identify objects and share data.Hence,a compatible carbon efficiency information service framework based on the Industrial Internet Identification is proposed in this paper to address the problem of computing and querying multi-source heterogeneous carbon emission data.We have defined a multi cooperation carbon emission data interaction model consisting of three roles and three basic operations.Further,the implementation of the framework includes carbon emission data identification,modeling,calculation,query and sharing.The practice results show that its capability and effectiveness in improving the responsiveness,accuracy,and credibility of compatible carbon efficiency data query and sharing services.展开更多
Unmanned Aerial Vehicles(UAVs)are gaining increasing attention in many fields,such as military,logistics,and hazardous site mapping.Utilizing UAVs to assist communications is one of the promising applications and rese...Unmanned Aerial Vehicles(UAVs)are gaining increasing attention in many fields,such as military,logistics,and hazardous site mapping.Utilizing UAVs to assist communications is one of the promising applications and research directions.The future Industrial Internet places higher demands on communication quality.The easy deployment,dynamic mobility,and low cost of UAVs make them a viable tool for wireless communication in the Industrial Internet.Therefore,UAVs are considered as an integral part of Industry 4.0.In this article,three typical use cases of UAVs-assisted communications in Industrial Internet are first summarized.Then,the state-of-the-art technologies for drone-assisted communication in support of the Industrial Internet are presented.According to the current research,it can be assumed that UAV-assisted communication can support the future Industrial Internet to a certain extent.Finally,the potential research directions and open challenges in UAV-assisted communications in the upcoming future Industrial Internet are discussed.展开更多
With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smar...With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smart equipment is not trustworthy,so the issue of data authenticity needs to be addressed.The SM2 digital signature algorithm can provide an authentication mechanism for data to solve such problems.Unfortunately,it still suffers from the problem of key exposure.In order to address this concern,this study first introduces a key-insulated scheme,SM2-KI-SIGN,based on the SM2 algorithm.This scheme boasts strong key insulation and secure keyupdates.Our scheme uses the elliptic curve algorithm,which is not only more efficient but also more suitable for IIoT-cloud environments.Finally,the security proof of SM2-KI-SIGN is given under the Elliptic Curve Discrete Logarithm(ECDL)assumption in the random oracle.展开更多
With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we p...With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we propose an intelligent service computing framework.In the framework,we take the long-term rewards of its important participants,edge service providers,as the optimization goal,which is related to service delay and computing cost.Considering the different update frequencies of data deployment and service offloading,double-timescale reinforcement learning is utilized in the framework.In the small-scale strategy,the frequent concurrency of services and the difference in service time lead to the fuzzy relationship between reward and action.To solve the fuzzy reward problem,a reward mapping-based reinforcement learning(RMRL)algorithm is proposed,which enables the agent to learn the relationship between reward and action more clearly.The large time scale strategy adopts the improved Monte Carlo tree search(MCTS)algorithm to improve the learning speed.The simulation results show that the strategy is superior to popular reinforcement learning algorithms such as double Q-learning(DDQN)and dueling Q-learning(dueling-DQN)in learning speed,and the reward is also increased by 14%.展开更多
Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(I...Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(IDS)is to prevent malicious attacks that corrupt operations and interrupt data flow,which might have significant impact on critical industries and infrastructure.This research examines existing IDS,based on Artificial Intelligence(AI)for IoT devices,methods,and techniques.The contribution of this study consists of identification of the most effective IDS systems in terms of accuracy,precision,recall and F1-score;this research also considers training time.Results demonstrate that Graph Neural Networks(GNN)have several benefits over other traditional AI frameworks through their ability to achieve in excess of 99%accuracy in a relatively short training time,while also capable of learning from network traffic the inherent characteristics of different cyber-attacks.These findings identify the GNN(a Deep Learning AI method)as the most efficient IDS system.The novelty of this research lies also in the linking between high yielding AI-based IDS algorithms and the AI-based learning approach for data privacy protection.This research recommends Federated Learning(FL)as the AI training model,which increases data privacy protection and reduces network data flow,resulting in a more secure and efficient IDS solution.展开更多
Effective control of time-sensitive industrial applications depends on the real-time transmission of data from underlying sensors.Quantifying the data freshness through age of information(AoI),in this paper,we jointly...Effective control of time-sensitive industrial applications depends on the real-time transmission of data from underlying sensors.Quantifying the data freshness through age of information(AoI),in this paper,we jointly design sampling and non-slot based scheduling policies to minimize the maximum time-average age of information(MAoI)among sensors with the constraints of average energy cost and finite queue stability.To overcome the intractability involving high couplings of such a complex stochastic process,we first focus on the single-sensor time-average AoI optimization problem and convert the constrained Markov decision process(CMDP)into an unconstrained Markov decision process(MDP)by the Lagrangian method.With the infinite-time average energy and AoI expression expended as the Bellman equation,the singlesensor time-average AoI optimization problem can be approached through the steady-state distribution probability.Further,we propose a low-complexity sub-optimal sampling and semi-distributed scheduling scheme for the multi-sensor scenario.The simulation results show that the proposed scheme reduces the MAoI significantly while achieving a balance between the sampling rate and service rate for multiple sensors.展开更多
Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady perform...Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady performance of eMBB traffic while meeting the requirements of URLLC traffic with puncturing is a major challenge in some realistic scenarios. In this paper, we pay attention to the timely and energy-efficient processing for eMBB traffic in the industrial Internet of Things(IIoT), where mobile edge computing(MEC) is employed for data processing. Specifically, the performance of eMBB traffic and URLLC traffic in a MEC-based IIoT system is ensured by setting the threshold of tolerable delay and outage probability, respectively. Furthermore,considering the limited energy supply, an energy minimization problem of eMBB device is formulated under the above constraints, by jointly optimizing the resource blocks(RBs) punctured by URLLC traffic, data offloading and transmit power of eMBB device. With Markov's inequality, the problem is reformulated by transforming the probabilistic outage constraint into a deterministic constraint. Meanwhile, an iterative energy minimization algorithm(IEMA) is proposed.Simulation results demonstrate that our algorithm has a significant reduction in the energy consumption for eMBB device and achieves a better overall effect compared to several benchmarks.展开更多
To address the problem of network security situation assessment in the Industrial Internet,this paper adopts the evidential reasoning(ER)algorithm and belief rule base(BRB)method to establish an assessment model.First...To address the problem of network security situation assessment in the Industrial Internet,this paper adopts the evidential reasoning(ER)algorithm and belief rule base(BRB)method to establish an assessment model.First,this paper analyzes the influencing factors of the Industrial Internet and selects evaluation indicators that contain not only quantitative data but also qualitative knowledge.Second,the evaluation indicators are fused with expert knowledge and the ER algorithm.According to the fusion results,a network security situation assessment model of the Industrial Internet based on the ER and BRB method is established,and the projection covariance matrix adaptive evolution strategy(P-CMA-ES)is used to optimize the model parameters.This method can not only utilize semiquantitative information effectively but also use more uncertain information and prevent the problem of combinatorial explosion.Moreover,it solves the problem of the uncertainty of expert knowledge and overcomes the problem of low modeling accuracy caused by insufficient data.Finally,a network security situation assessment case of the Industrial Internet is analyzed to verify the effectiveness and superiority of the method.The research results showthat this method has strong applicability to the network security situation assessment of complex Industrial Internet systems.It can accurately reflect the actual network security situation of Industrial Internet systems and provide safe and reliable suggestions for network administrators to take timely countermeasures,thereby improving the risk monitoring and emergency response capabilities of the Industrial Internet.展开更多
By identifying and responding to any malicious behavior that could endanger the system,the Intrusion Detection System(IDS)is crucial for preserving the security of the Industrial Internet of Things(IIoT)network.The be...By identifying and responding to any malicious behavior that could endanger the system,the Intrusion Detection System(IDS)is crucial for preserving the security of the Industrial Internet of Things(IIoT)network.The benefit of anomaly-based IDS is that they are able to recognize zeroday attacks due to the fact that they do not rely on a signature database to identify abnormal activity.In order to improve control over datasets and the process,this study proposes using an automated machine learning(AutoML)technique to automate the machine learning processes for IDS.Our groundbreaking architecture,known as AID4I,makes use of automatic machine learning methods for intrusion detection.Through automation of preprocessing,feature selection,model selection,and hyperparameter tuning,the objective is to identify an appropriate machine learning model for intrusion detection.Experimental studies demonstrate that the AID4I framework successfully proposes a suitablemodel.The integrity,security,and confidentiality of data transmitted across the IIoT network can be ensured by automating machine learning processes in the IDS to enhance its capacity to identify and stop threatening activities.With a comprehensive solution that takes advantage of the latest advances in automated machine learning methods to improve network security,AID4I is a powerful and effective instrument for intrusion detection.In preprocessing module,three distinct imputation methods are utilized to handle missing data,ensuring the robustness of the intrusion detection system in the presence of incomplete information.Feature selection module adopts a hybrid approach that combines Shapley values and genetic algorithm.The Parameter Optimization module encompasses a diverse set of 14 classification methods,allowing for thorough exploration and optimization of the parameters associated with each algorithm.By carefully tuning these parameters,the framework enhances its adaptability and accuracy in identifying potential intrusions.Experimental results demonstrate that the AID4I framework can achieve high levels of accuracy in detecting network intrusions up to 14.39%on public datasets,outperforming traditional intrusion detection methods while concurrently reducing the elapsed time for training and testing.展开更多
With the development and widespread use of blockchain in recent years,many projects have introduced blockchain technology to solve the growing security issues of the Industrial Internet of Things(IIoT).However,due to ...With the development and widespread use of blockchain in recent years,many projects have introduced blockchain technology to solve the growing security issues of the Industrial Internet of Things(IIoT).However,due to the conflict between the operational performance and security of the blockchain system and the compatibility issues with a large number of IIoT devices running together,the mainstream blockchain system cannot be applied to IIoT scenarios.In order to solve these problems,this paper proposes SBFT(Speculative Byzantine Consensus Protocol),a flexible and scalable blockchain consensus mechanism for the Industrial Internet of Things.SBFT has a consensus process based on speculation,improving the throughput and consensus speed of blockchain systems and reducing communication overhead.In order to improve the compatibility and scalability of the blockchain system,we select some nodes to participate in the consensus,and these nodes have better performance in the network.Since multiple properties determine node performance,we abstract the node selection problem as a joint optimization problem and use Dueling Deep Q Learning(DQL)to solve it.Finally,we evaluate the performance of the scheme through simulation,and the simulation results prove the superiority of our scheme.展开更多
Localisation of machines in harsh Industrial Internet of Things(IIoT)environment is necessary for various applications.Therefore,a novel localisation algorithm is proposed for noisy range measurements in IIoT networks...Localisation of machines in harsh Industrial Internet of Things(IIoT)environment is necessary for various applications.Therefore,a novel localisation algorithm is proposed for noisy range measurements in IIoT networks.The position of an unknown machine device in the network is estimated using the relative distances between blind machines(BMs)and anchor machines(AMs).Moreover,a more practical and challenging scenario with the erroneous position of AM is considered,which brings additional uncertainty to the final position estimation.Therefore,the AMs selection algorithm for the localisation of BMs in the IIoT network is introduced.Only those AMs will participate in the localisation process,which increases the accuracy of the final location estimate.Then,the closed‐form expression of the proposed greedy successive anchorization process is derived,which prevents possible local convergence,reduces computation,and achieves Cramér‐Rao lower bound accuracy for white Gaussian measurement noise.The results are compared with the state‐of‐the‐art and verified through numerous simulations.展开更多
The evolution of the Internet of Things(IoT)has empowered modern industries with the capability to implement large-scale IoT ecosystems,such as the Industrial Internet of Things(IIoT).The IIoT is vulnerable to a diver...The evolution of the Internet of Things(IoT)has empowered modern industries with the capability to implement large-scale IoT ecosystems,such as the Industrial Internet of Things(IIoT).The IIoT is vulnerable to a diverse range of cyberattacks that can be exploited by intruders and cause substantial reputational andfinancial harm to organizations.To preserve the confidentiality,integrity,and availability of IIoT networks,an anomaly-based intrusion detection system(IDS)can be used to provide secure,reliable,and efficient IIoT ecosystems.In this paper,we propose an anomaly-based IDS for IIoT networks as an effective security solution to efficiently and effectively overcome several IIoT cyberattacks.The proposed anomaly-based IDS is divided into three phases:pre-processing,feature selection,and classification.In the pre-processing phase,data cleaning and nor-malization are performed.In the feature selection phase,the candidates’feature vectors are computed using two feature reduction techniques,minimum redun-dancy maximum relevance and neighborhood components analysis.For thefinal step,the modeling phase,the following classifiers are used to perform the classi-fication:support vector machine,decision tree,k-nearest neighbors,and linear discriminant analysis.The proposed work uses a new data-driven IIoT data set called X-IIoTID.The experimental evaluation demonstrates our proposed model achieved a high accuracy rate of 99.58%,a sensitivity rate of 99.59%,a specificity rate of 99.58%,and a low false positive rate of 0.4%.展开更多
The rapid growth of the Internet of Things(IoT)in the industrial sector has given rise to a new term:the Industrial Internet of Things(IIoT).The IIoT is a collection of devices,apps,and services that connect physical ...The rapid growth of the Internet of Things(IoT)in the industrial sector has given rise to a new term:the Industrial Internet of Things(IIoT).The IIoT is a collection of devices,apps,and services that connect physical and virtual worlds to create smart,cost-effective,and scalable systems.Although the IIoT has been implemented and incorporated into a wide range of industrial control systems,maintaining its security and privacy remains a significant concern.In the IIoT contexts,an intrusion detection system(IDS)can be an effective security solution for ensuring data confidentiality,integrity,and availability.In this paper,we propose an intelligent intrusion detection technique that uses principal components analysis(PCA)as a feature engineering method to choose the most significant features,minimize data dimensionality,and enhance detection performance.In the classification phase,we use clustering algorithms such as K-medoids and K-means to determine whether a given flow of IIoT traffic is normal or attack for binary classification and identify the group of cyberattacks according to its specific type for multi-class classification.To validate the effectiveness and robustness of our proposed model,we validate the detection method on a new driven IIoT dataset called X-IIoTID.The performance results showed our proposed detection model obtained a higher accuracy rate of 99.79%and reduced error rate of 0.21%when compared to existing techniques.展开更多
In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to im...In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to improve IIoT service efficiency.There are two types of costs for this kind of IoT network:a communication cost and a computing cost.For service efficiency,the communication cost of data transmission should be minimized,and the computing cost in the edge cloud should be also minimized.Therefore,in this paper,the communication cost for data transmission is defined as the delay factor,and the computing cost in the edge cloud is defined as the waiting time of the computing intensity.The proposed method selects an edge cloud that minimizes the total cost of the communication and computing costs.That is,a device chooses a routing path to the selected edge cloud based on the costs.The proposed method controls the data flows in a mesh-structured network and appropriately distributes the data processing load.The performance of the proposed method is validated through extensive computer simulation.When the transition probability from good to bad is 0.3 and the transition probability from bad to good is 0.7 in wireless and edge cloud states,the proposed method reduced both the average delay and the service pause counts to about 25%of the existing method.展开更多
The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated...The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated to cyber security threats that need to be addressed.This work investigates hybrid cyber threats(HCTs),which are now working on an entirely new level with the increasingly adopted IIoT.This work focuses on emerging methods to model,detect,and defend against hybrid cyber attacks using machine learning(ML)techniques.Specifically,a novel ML-based HCT modelling and analysis framework was proposed,in which L1 regularisation and Random Forest were used to cluster features and analyse the importance and impact of each feature in both individual threats and HCTs.A grey relation analysis-based model was employed to construct the correlation between IIoT components and different threats.展开更多
To ensure the safe operation of industrial digital twins network and avoid the harm to the system caused by hacker invasion,a series of discussions on network security issues are carried out based on game theory.From ...To ensure the safe operation of industrial digital twins network and avoid the harm to the system caused by hacker invasion,a series of discussions on network security issues are carried out based on game theory.From the perspective of the life cycle of network vulnerabilities,mining and repairing vulnerabilities are analyzed by applying evolutionary game theory.The evolution process of knowledge sharing among white hats under various conditions is simulated,and a game model of the vulnerability patch cooperative development strategy among manufacturers is constructed.On this basis,the differential evolution is introduced into the update mechanism of the Wolf Colony Algorithm(WCA)to produce better replacement individuals with greater probability from the perspective of both attack and defense.Through the simulation experiment,it is found that the convergence speed of the probability(X)of white Hat 1 choosing the knowledge sharing policy is related to the probability(x0)of white Hat 2 choosing the knowledge sharing policy initially,and the probability(y0)of white hat 2 choosing the knowledge sharing policy initially.When y0?0.9,X converges rapidly in a relatively short time.When y0 is constant and x0 is small,the probability curve of the“cooperative development”strategy converges to 0.It is concluded that the higher the trust among the white hat members in the temporary team,the stronger their willingness to share knowledge,which is conducive to the mining of loopholes in the system.The greater the probability of a hacker attacking the vulnerability before it is fully disclosed,the lower the willingness of manufacturers to choose the"cooperative development"of vulnerability patches.Applying the improved wolf colonyco-evolution algorithm can obtain the equilibrium solution of the"attack and defense game model",and allocate the security protection resources according to the importance of nodes.This study can provide an effective solution to protect the network security for digital twins in the industry.展开更多
Network intrusion detection systems(NIDS)based on deep learning have continued to make significant advances.However,the following challenges remain:on the one hand,simply applying only Temporal Convolutional Networks(...Network intrusion detection systems(NIDS)based on deep learning have continued to make significant advances.However,the following challenges remain:on the one hand,simply applying only Temporal Convolutional Networks(TCNs)can lead to models that ignore the impact of network traffic features at different scales on the detection performance.On the other hand,some intrusion detection methods considermulti-scale information of traffic data,but considering only forward network traffic information can lead to deficiencies in capturing multi-scale temporal features.To address both of these issues,we propose a hybrid Convolutional Neural Network that supports a multi-output strategy(BONUS)for industrial internet intrusion detection.First,we create a multiscale Temporal Convolutional Network by stacking TCN of different scales to capture the multiscale information of network traffic.Meanwhile,we propose a bi-directional structure and dynamically set the weights to fuse the forward and backward contextual information of network traffic at each scale to enhance the model’s performance in capturing the multi-scale temporal features of network traffic.In addition,we introduce a gated network for each of the two branches in the proposed method to assist the model in learning the feature representation of each branch.Extensive experiments reveal the effectiveness of the proposed approach on two publicly available traffic intrusion detection datasets named UNSW-NB15 and NSL-KDD with F1 score of 85.03% and 99.31%,respectively,which also validates the effectiveness of enhancing the model’s ability to capture multi-scale temporal features of traffic data on detection performance.展开更多
The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for...The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.展开更多
基金supported by the National Natural Science Foundation of China(No.92267301).
文摘In recent years,the Industrial Internet and Industry 4.0 came into being.With the development of modern industrial intelligent manufacturing technology,digital twins,Web3 and many other digital entity applications are also proposed.These applications apply architectures such as distributed learning,resource sharing,and arithmetic trading,which make high demands on identity authentication,asset authentication,resource addressing,and service location.Therefore,an efficient,secure,and trustworthy Industrial Internet identity resolution system is needed.However,most of the traditional identity resolution systems follow DNS architecture or tree structure,which has the risk of a single point of failure and DDoS attack.And they cannot guarantee the security and privacy of digital identity,personal assets,and device information.So we consider a decentralized approach for identity management,identity authentication,and asset verification.In this paper,we propose a distributed trusted active identity resolution system based on the inter-planetary file system(IPFS)and non-fungible token(NFT),which can provide distributed identity resolution services.And we have designed the system architecture,identity service process,load balancing strategy and smart contract service.In addition,we use Jmeter to verify the performance of the system,and the results show that the system has good high concurrent performance and robustness.
基金supported by National Key R&D Program of China(2022YFB3104200)in part by National Natural Science Foundation of China(62202386)+2 种基金in part by Basic Research Programs of Taicang(TC2021JC31)in part by Fundamental Research Funds for the Central Universities(D5000210817)in part by Xi’an Unmanned System Security and Intelligent Communications ISTC Center,and in part by Special Funds for Central Universities Construction of World-Class Universities(Disciplines)and Special Development Guidance(0639022GH0202237 and 0639022SH0201237).
文摘Industrial Internet combines the industrial system with Internet connectivity to build a new manufacturing and service system covering the entire industry chain and value chain.Its highly heterogeneous network structure and diversified application requirements call for the applying of network slicing technology.Guaranteeing robust network slicing is essential for Industrial Internet,but it faces the challenge of complex slice topologies caused by the intricate interaction relationships among Network Functions(NFs)composing the slice.Existing works have not concerned the strengthening problem of industrial network slicing regarding its complex network properties.Towards this end,we aim to study this issue by intelligently selecting a subset of most valuable NFs with the minimum cost to satisfy the strengthening requirements.State-of-the-art AlphaGo series of algorithms and the advanced graph neural network technology are combined to build the solution.Simulation results demonstrate the superior performance of our scheme compared to the benchmark schemes.
基金supported by the 2018 Industrial Internet Innovation and Development Project——Industrial Internet Identification Resolution Sys⁃tem:National Top-Level Node Construction Project(Phase I).
文摘Green and low-carbon is a new development model that seeks balance between environmental sustainability and high economic growth.If explainable and available carbon emission data can be accurately obtained,it will help policy regulators and enterprise managers to more accurately implement this development strategy.A lot of research has been carried out,but it is still a difficult problem that how to accommodate and adapt the complex carbon emission data computing models and factor libraries developed by different regions,different industries and different enterprises.Meanwhile,with the rapid development of the Industrial Internet,it has not only been used for the supply chain optimization and intelligent scheduling of the manufacturing industry,but also been used by more and more industries as an important way of digital transformation.Especially in China,the Industrial Internet identification and resolution system is becoming an important digital infrastructure to uniquely identify objects and share data.Hence,a compatible carbon efficiency information service framework based on the Industrial Internet Identification is proposed in this paper to address the problem of computing and querying multi-source heterogeneous carbon emission data.We have defined a multi cooperation carbon emission data interaction model consisting of three roles and three basic operations.Further,the implementation of the framework includes carbon emission data identification,modeling,calculation,query and sharing.The practice results show that its capability and effectiveness in improving the responsiveness,accuracy,and credibility of compatible carbon efficiency data query and sharing services.
基金supported in part by National Key Research&Devel-opment Program of China(2021YFB2900801)in part by Guangdong Basic and Applied Basic Research Foundation(2022A1515110335)in party by Fundamental Research Funds for the Central Universities(FRF-TP-22-094A1).
文摘Unmanned Aerial Vehicles(UAVs)are gaining increasing attention in many fields,such as military,logistics,and hazardous site mapping.Utilizing UAVs to assist communications is one of the promising applications and research directions.The future Industrial Internet places higher demands on communication quality.The easy deployment,dynamic mobility,and low cost of UAVs make them a viable tool for wireless communication in the Industrial Internet.Therefore,UAVs are considered as an integral part of Industry 4.0.In this article,three typical use cases of UAVs-assisted communications in Industrial Internet are first summarized.Then,the state-of-the-art technologies for drone-assisted communication in support of the Industrial Internet are presented.According to the current research,it can be assumed that UAV-assisted communication can support the future Industrial Internet to a certain extent.Finally,the potential research directions and open challenges in UAV-assisted communications in the upcoming future Industrial Internet are discussed.
基金This work was supported in part by the National Natural Science Foundation of China(Nos.62072074,62076054,62027827,62002047)the Sichuan Science and Technology Innovation Platform and Talent Plan(Nos.2020JDJQ0020,2022JDJQ0039)+2 种基金the Sichuan Science and Technology Support Plan(Nos.2020YFSY0010,2022YFQ0045,2022YFS0220,2023YFG0148,2021YFG0131)the YIBIN Science and Technology Support Plan(No.2021CG003)the Medico-Engineering Cooperation Funds from University of Electronic Science and Technology of China(Nos.ZYGX2021YGLH212,ZYGX2022YGRH012).
文摘With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smart equipment is not trustworthy,so the issue of data authenticity needs to be addressed.The SM2 digital signature algorithm can provide an authentication mechanism for data to solve such problems.Unfortunately,it still suffers from the problem of key exposure.In order to address this concern,this study first introduces a key-insulated scheme,SM2-KI-SIGN,based on the SM2 algorithm.This scheme boasts strong key insulation and secure keyupdates.Our scheme uses the elliptic curve algorithm,which is not only more efficient but also more suitable for IIoT-cloud environments.Finally,the security proof of SM2-KI-SIGN is given under the Elliptic Curve Discrete Logarithm(ECDL)assumption in the random oracle.
基金supported by the National Natural Science Foundation of China(No.62171051)。
文摘With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we propose an intelligent service computing framework.In the framework,we take the long-term rewards of its important participants,edge service providers,as the optimization goal,which is related to service delay and computing cost.Considering the different update frequencies of data deployment and service offloading,double-timescale reinforcement learning is utilized in the framework.In the small-scale strategy,the frequent concurrency of services and the difference in service time lead to the fuzzy relationship between reward and action.To solve the fuzzy reward problem,a reward mapping-based reinforcement learning(RMRL)algorithm is proposed,which enables the agent to learn the relationship between reward and action more clearly.The large time scale strategy adopts the improved Monte Carlo tree search(MCTS)algorithm to improve the learning speed.The simulation results show that the strategy is superior to popular reinforcement learning algorithms such as double Q-learning(DDQN)and dueling Q-learning(dueling-DQN)in learning speed,and the reward is also increased by 14%.
文摘Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(IDS)is to prevent malicious attacks that corrupt operations and interrupt data flow,which might have significant impact on critical industries and infrastructure.This research examines existing IDS,based on Artificial Intelligence(AI)for IoT devices,methods,and techniques.The contribution of this study consists of identification of the most effective IDS systems in terms of accuracy,precision,recall and F1-score;this research also considers training time.Results demonstrate that Graph Neural Networks(GNN)have several benefits over other traditional AI frameworks through their ability to achieve in excess of 99%accuracy in a relatively short training time,while also capable of learning from network traffic the inherent characteristics of different cyber-attacks.These findings identify the GNN(a Deep Learning AI method)as the most efficient IDS system.The novelty of this research lies also in the linking between high yielding AI-based IDS algorithms and the AI-based learning approach for data privacy protection.This research recommends Federated Learning(FL)as the AI training model,which increases data privacy protection and reduces network data flow,resulting in a more secure and efficient IDS solution.
基金supported in part by the National Key R&D Program of China(No.2021YFB3300100)the National Natural Science Foundation of China(No.62171062)。
文摘Effective control of time-sensitive industrial applications depends on the real-time transmission of data from underlying sensors.Quantifying the data freshness through age of information(AoI),in this paper,we jointly design sampling and non-slot based scheduling policies to minimize the maximum time-average age of information(MAoI)among sensors with the constraints of average energy cost and finite queue stability.To overcome the intractability involving high couplings of such a complex stochastic process,we first focus on the single-sensor time-average AoI optimization problem and convert the constrained Markov decision process(CMDP)into an unconstrained Markov decision process(MDP)by the Lagrangian method.With the infinite-time average energy and AoI expression expended as the Bellman equation,the singlesensor time-average AoI optimization problem can be approached through the steady-state distribution probability.Further,we propose a low-complexity sub-optimal sampling and semi-distributed scheduling scheme for the multi-sensor scenario.The simulation results show that the proposed scheme reduces the MAoI significantly while achieving a balance between the sampling rate and service rate for multiple sensors.
基金supported by the Natural Science Foundation of China (No.62171051)。
文摘Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady performance of eMBB traffic while meeting the requirements of URLLC traffic with puncturing is a major challenge in some realistic scenarios. In this paper, we pay attention to the timely and energy-efficient processing for eMBB traffic in the industrial Internet of Things(IIoT), where mobile edge computing(MEC) is employed for data processing. Specifically, the performance of eMBB traffic and URLLC traffic in a MEC-based IIoT system is ensured by setting the threshold of tolerable delay and outage probability, respectively. Furthermore,considering the limited energy supply, an energy minimization problem of eMBB device is formulated under the above constraints, by jointly optimizing the resource blocks(RBs) punctured by URLLC traffic, data offloading and transmit power of eMBB device. With Markov's inequality, the problem is reformulated by transforming the probabilistic outage constraint into a deterministic constraint. Meanwhile, an iterative energy minimization algorithm(IEMA) is proposed.Simulation results demonstrate that our algorithm has a significant reduction in the energy consumption for eMBB device and achieves a better overall effect compared to several benchmarks.
基金supported by the Provincial Universities Basic Business Expense Scientific Research Projects of Heilongjiang Province(No.2021-KYYWF-0179)the Science and Technology Project of Henan Province(No.212102310991)+2 种基金the Opening Project of Shanghai Key Laboratory of Integrated Administration Technologies for Information Security(No.AGK2015003)the Key Scientific Research Project of Henan Province(No.21A413001)the Postgraduate Innovation Project of Harbin Normal University(No.HSDSSCX2021-121).
文摘To address the problem of network security situation assessment in the Industrial Internet,this paper adopts the evidential reasoning(ER)algorithm and belief rule base(BRB)method to establish an assessment model.First,this paper analyzes the influencing factors of the Industrial Internet and selects evaluation indicators that contain not only quantitative data but also qualitative knowledge.Second,the evaluation indicators are fused with expert knowledge and the ER algorithm.According to the fusion results,a network security situation assessment model of the Industrial Internet based on the ER and BRB method is established,and the projection covariance matrix adaptive evolution strategy(P-CMA-ES)is used to optimize the model parameters.This method can not only utilize semiquantitative information effectively but also use more uncertain information and prevent the problem of combinatorial explosion.Moreover,it solves the problem of the uncertainty of expert knowledge and overcomes the problem of low modeling accuracy caused by insufficient data.Finally,a network security situation assessment case of the Industrial Internet is analyzed to verify the effectiveness and superiority of the method.The research results showthat this method has strong applicability to the network security situation assessment of complex Industrial Internet systems.It can accurately reflect the actual network security situation of Industrial Internet systems and provide safe and reliable suggestions for network administrators to take timely countermeasures,thereby improving the risk monitoring and emergency response capabilities of the Industrial Internet.
文摘By identifying and responding to any malicious behavior that could endanger the system,the Intrusion Detection System(IDS)is crucial for preserving the security of the Industrial Internet of Things(IIoT)network.The benefit of anomaly-based IDS is that they are able to recognize zeroday attacks due to the fact that they do not rely on a signature database to identify abnormal activity.In order to improve control over datasets and the process,this study proposes using an automated machine learning(AutoML)technique to automate the machine learning processes for IDS.Our groundbreaking architecture,known as AID4I,makes use of automatic machine learning methods for intrusion detection.Through automation of preprocessing,feature selection,model selection,and hyperparameter tuning,the objective is to identify an appropriate machine learning model for intrusion detection.Experimental studies demonstrate that the AID4I framework successfully proposes a suitablemodel.The integrity,security,and confidentiality of data transmitted across the IIoT network can be ensured by automating machine learning processes in the IDS to enhance its capacity to identify and stop threatening activities.With a comprehensive solution that takes advantage of the latest advances in automated machine learning methods to improve network security,AID4I is a powerful and effective instrument for intrusion detection.In preprocessing module,three distinct imputation methods are utilized to handle missing data,ensuring the robustness of the intrusion detection system in the presence of incomplete information.Feature selection module adopts a hybrid approach that combines Shapley values and genetic algorithm.The Parameter Optimization module encompasses a diverse set of 14 classification methods,allowing for thorough exploration and optimization of the parameters associated with each algorithm.By carefully tuning these parameters,the framework enhances its adaptability and accuracy in identifying potential intrusions.Experimental results demonstrate that the AID4I framework can achieve high levels of accuracy in detecting network intrusions up to 14.39%on public datasets,outperforming traditional intrusion detection methods while concurrently reducing the elapsed time for training and testing.
文摘With the development and widespread use of blockchain in recent years,many projects have introduced blockchain technology to solve the growing security issues of the Industrial Internet of Things(IIoT).However,due to the conflict between the operational performance and security of the blockchain system and the compatibility issues with a large number of IIoT devices running together,the mainstream blockchain system cannot be applied to IIoT scenarios.In order to solve these problems,this paper proposes SBFT(Speculative Byzantine Consensus Protocol),a flexible and scalable blockchain consensus mechanism for the Industrial Internet of Things.SBFT has a consensus process based on speculation,improving the throughput and consensus speed of blockchain systems and reducing communication overhead.In order to improve the compatibility and scalability of the blockchain system,we select some nodes to participate in the consensus,and these nodes have better performance in the network.Since multiple properties determine node performance,we abstract the node selection problem as a joint optimization problem and use Dueling Deep Q Learning(DQL)to solve it.Finally,we evaluate the performance of the scheme through simulation,and the simulation results prove the superiority of our scheme.
文摘Localisation of machines in harsh Industrial Internet of Things(IIoT)environment is necessary for various applications.Therefore,a novel localisation algorithm is proposed for noisy range measurements in IIoT networks.The position of an unknown machine device in the network is estimated using the relative distances between blind machines(BMs)and anchor machines(AMs).Moreover,a more practical and challenging scenario with the erroneous position of AM is considered,which brings additional uncertainty to the final position estimation.Therefore,the AMs selection algorithm for the localisation of BMs in the IIoT network is introduced.Only those AMs will participate in the localisation process,which increases the accuracy of the final location estimate.Then,the closed‐form expression of the proposed greedy successive anchorization process is derived,which prevents possible local convergence,reduces computation,and achieves Cramér‐Rao lower bound accuracy for white Gaussian measurement noise.The results are compared with the state‐of‐the‐art and verified through numerous simulations.
文摘The evolution of the Internet of Things(IoT)has empowered modern industries with the capability to implement large-scale IoT ecosystems,such as the Industrial Internet of Things(IIoT).The IIoT is vulnerable to a diverse range of cyberattacks that can be exploited by intruders and cause substantial reputational andfinancial harm to organizations.To preserve the confidentiality,integrity,and availability of IIoT networks,an anomaly-based intrusion detection system(IDS)can be used to provide secure,reliable,and efficient IIoT ecosystems.In this paper,we propose an anomaly-based IDS for IIoT networks as an effective security solution to efficiently and effectively overcome several IIoT cyberattacks.The proposed anomaly-based IDS is divided into three phases:pre-processing,feature selection,and classification.In the pre-processing phase,data cleaning and nor-malization are performed.In the feature selection phase,the candidates’feature vectors are computed using two feature reduction techniques,minimum redun-dancy maximum relevance and neighborhood components analysis.For thefinal step,the modeling phase,the following classifiers are used to perform the classi-fication:support vector machine,decision tree,k-nearest neighbors,and linear discriminant analysis.The proposed work uses a new data-driven IIoT data set called X-IIoTID.The experimental evaluation demonstrates our proposed model achieved a high accuracy rate of 99.58%,a sensitivity rate of 99.59%,a specificity rate of 99.58%,and a low false positive rate of 0.4%.
文摘The rapid growth of the Internet of Things(IoT)in the industrial sector has given rise to a new term:the Industrial Internet of Things(IIoT).The IIoT is a collection of devices,apps,and services that connect physical and virtual worlds to create smart,cost-effective,and scalable systems.Although the IIoT has been implemented and incorporated into a wide range of industrial control systems,maintaining its security and privacy remains a significant concern.In the IIoT contexts,an intrusion detection system(IDS)can be an effective security solution for ensuring data confidentiality,integrity,and availability.In this paper,we propose an intelligent intrusion detection technique that uses principal components analysis(PCA)as a feature engineering method to choose the most significant features,minimize data dimensionality,and enhance detection performance.In the classification phase,we use clustering algorithms such as K-medoids and K-means to determine whether a given flow of IIoT traffic is normal or attack for binary classification and identify the group of cyberattacks according to its specific type for multi-class classification.To validate the effectiveness and robustness of our proposed model,we validate the detection method on a new driven IIoT dataset called X-IIoTID.The performance results showed our proposed detection model obtained a higher accuracy rate of 99.79%and reduced error rate of 0.21%when compared to existing techniques.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (No.2021R1C1C1013133)supported by the Institute of Information and Communications Technology Planning and Evaluation (IITP)grant funded by the Korea Government (MSIT) (RS-2022-00167197,Development of Intelligent 5G/6G Infrastructure Technology for The Smart City)supported by the Soonchunhyang University Research Fund.
文摘In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to improve IIoT service efficiency.There are two types of costs for this kind of IoT network:a communication cost and a computing cost.For service efficiency,the communication cost of data transmission should be minimized,and the computing cost in the edge cloud should be also minimized.Therefore,in this paper,the communication cost for data transmission is defined as the delay factor,and the computing cost in the edge cloud is defined as the waiting time of the computing intensity.The proposed method selects an edge cloud that minimizes the total cost of the communication and computing costs.That is,a device chooses a routing path to the selected edge cloud based on the costs.The proposed method controls the data flows in a mesh-structured network and appropriately distributes the data processing load.The performance of the proposed method is validated through extensive computer simulation.When the transition probability from good to bad is 0.3 and the transition probability from bad to good is 0.7 in wireless and edge cloud states,the proposed method reduced both the average delay and the service pause counts to about 25%of the existing method.
文摘The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated to cyber security threats that need to be addressed.This work investigates hybrid cyber threats(HCTs),which are now working on an entirely new level with the increasingly adopted IIoT.This work focuses on emerging methods to model,detect,and defend against hybrid cyber attacks using machine learning(ML)techniques.Specifically,a novel ML-based HCT modelling and analysis framework was proposed,in which L1 regularisation and Random Forest were used to cluster features and analyse the importance and impact of each feature in both individual threats and HCTs.A grey relation analysis-based model was employed to construct the correlation between IIoT components and different threats.
文摘To ensure the safe operation of industrial digital twins network and avoid the harm to the system caused by hacker invasion,a series of discussions on network security issues are carried out based on game theory.From the perspective of the life cycle of network vulnerabilities,mining and repairing vulnerabilities are analyzed by applying evolutionary game theory.The evolution process of knowledge sharing among white hats under various conditions is simulated,and a game model of the vulnerability patch cooperative development strategy among manufacturers is constructed.On this basis,the differential evolution is introduced into the update mechanism of the Wolf Colony Algorithm(WCA)to produce better replacement individuals with greater probability from the perspective of both attack and defense.Through the simulation experiment,it is found that the convergence speed of the probability(X)of white Hat 1 choosing the knowledge sharing policy is related to the probability(x0)of white Hat 2 choosing the knowledge sharing policy initially,and the probability(y0)of white hat 2 choosing the knowledge sharing policy initially.When y0?0.9,X converges rapidly in a relatively short time.When y0 is constant and x0 is small,the probability curve of the“cooperative development”strategy converges to 0.It is concluded that the higher the trust among the white hat members in the temporary team,the stronger their willingness to share knowledge,which is conducive to the mining of loopholes in the system.The greater the probability of a hacker attacking the vulnerability before it is fully disclosed,the lower the willingness of manufacturers to choose the"cooperative development"of vulnerability patches.Applying the improved wolf colonyco-evolution algorithm can obtain the equilibrium solution of the"attack and defense game model",and allocate the security protection resources according to the importance of nodes.This study can provide an effective solution to protect the network security for digital twins in the industry.
基金sponsored by the Autonomous Region Key R&D Task Special(2022B01008)the National Key R&D Program of China(SQ2022AAA010308-5).
文摘Network intrusion detection systems(NIDS)based on deep learning have continued to make significant advances.However,the following challenges remain:on the one hand,simply applying only Temporal Convolutional Networks(TCNs)can lead to models that ignore the impact of network traffic features at different scales on the detection performance.On the other hand,some intrusion detection methods considermulti-scale information of traffic data,but considering only forward network traffic information can lead to deficiencies in capturing multi-scale temporal features.To address both of these issues,we propose a hybrid Convolutional Neural Network that supports a multi-output strategy(BONUS)for industrial internet intrusion detection.First,we create a multiscale Temporal Convolutional Network by stacking TCN of different scales to capture the multiscale information of network traffic.Meanwhile,we propose a bi-directional structure and dynamically set the weights to fuse the forward and backward contextual information of network traffic at each scale to enhance the model’s performance in capturing the multi-scale temporal features of network traffic.In addition,we introduce a gated network for each of the two branches in the proposed method to assist the model in learning the feature representation of each branch.Extensive experiments reveal the effectiveness of the proposed approach on two publicly available traffic intrusion detection datasets named UNSW-NB15 and NSL-KDD with F1 score of 85.03% and 99.31%,respectively,which also validates the effectiveness of enhancing the model’s ability to capture multi-scale temporal features of traffic data on detection performance.
文摘The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.