期刊文献+
共找到5,357篇文章
< 1 2 250 >
每页显示 20 50 100
Deep Learning-Based Secure Transmission Strategy with Sensor-Transmission-Computing Linkage for Power Internet of Things
1
作者 Bin Li Linghui Kong +3 位作者 Xiangyi Zhang Bochuo Kou Hui Yu Bowen Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3267-3282,共16页
The automatic collection of power grid situation information, along with real-time multimedia interaction between the front and back ends during the accident handling process, has generated a massive amount of power g... The automatic collection of power grid situation information, along with real-time multimedia interaction between the front and back ends during the accident handling process, has generated a massive amount of power grid data. While wireless communication offers a convenient channel for grid terminal access and data transmission, it is important to note that the bandwidth of wireless communication is limited. Additionally, the broadcast nature of wireless transmission raises concerns about the potential for unauthorized eavesdropping during data transmission. To address these challenges and achieve reliable, secure, and real-time transmission of power grid data, an intelligent security transmission strategy with sensor-transmission-computing linkage is proposed in this paper. The primary objective of this strategy is to maximize the confidentiality capacity of the system. To tackle this, an optimization problem is formulated, taking into consideration interruption probability and interception probability as constraints. To efficiently solve this optimization problem, a low-complexity algorithm rooted in deep reinforcement learning is designed, which aims to derive a suboptimal solution for the problem at hand. Ultimately, through simulation results, the validity of the proposed strategy in guaranteed communication security, stability, and timeliness is substantiated. The results confirm that the proposed intelligent security transmission strategy significantly contributes to the safeguarding of communication integrity, system stability, and timely data delivery. 展开更多
关键词 Secure transmission deep learning power internet of things sensor-transmission-computing
下载PDF
Multi-source heterogeneous data access management framework and key technologies for electric power Internet of Things
2
作者 Pengtian Guo Kai Xiao +1 位作者 Xiaohui Wang Daoxing Li 《Global Energy Interconnection》 EI CSCD 2024年第1期94-105,共12页
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall... The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT. 展开更多
关键词 power internet of things Object model High concurrency access Zero trust mechanism Multi-source heterogeneous data
下载PDF
RL and AHP-Based Multi-Timescale Multi-Clock Source Time Synchronization for Distribution Power Internet of Things
3
作者 Jiangang Lu Ruifeng Zhao +2 位作者 Zhiwen Yu Yue Dai Kaiwen Zeng 《Computers, Materials & Continua》 SCIE EI 2024年第3期4453-4469,共17页
Time synchronization(TS)is crucial for ensuring the secure and reliable functioning of the distribution power Internet of Things(IoT).Multi-clock source time synchronization(MTS)has significant advantages of high reli... Time synchronization(TS)is crucial for ensuring the secure and reliable functioning of the distribution power Internet of Things(IoT).Multi-clock source time synchronization(MTS)has significant advantages of high reliability and accuracy but still faces challenges such as optimization of the multi-clock source selection and the clock source weight calculation at different timescales,and the coupling of synchronization latency jitter and pulse phase difference.In this paper,the multi-timescale MTS model is conducted,and the reinforcement learning(RL)and analytic hierarchy process(AHP)-based multi-timescale MTS algorithm is designed to improve the weighted summation of synchronization latency jitter standard deviation and average pulse phase difference.Specifically,the multi-clock source selection is optimized based on Softmax in the large timescale,and the clock source weight calculation is optimized based on lower confidence bound-assisted AHP in the small timescale.Simulation shows that the proposed algorithm can effectively reduce time synchronization delay standard deviation and average pulse phase difference. 展开更多
关键词 Multi-clock source time synchronization(TS) power internet of things reinforcement learning analytic hierarchy process
下载PDF
Age-Driven Joint Sampling and Non-Slot Based Scheduling for Industrial Internet of Things
4
作者 Cao Yali Teng Yinglei +1 位作者 Song Mei Wang Nan 《China Communications》 SCIE CSCD 2024年第11期190-204,共15页
Effective control of time-sensitive industrial applications depends on the real-time transmission of data from underlying sensors.Quantifying the data freshness through age of information(AoI),in this paper,we jointly... Effective control of time-sensitive industrial applications depends on the real-time transmission of data from underlying sensors.Quantifying the data freshness through age of information(AoI),in this paper,we jointly design sampling and non-slot based scheduling policies to minimize the maximum time-average age of information(MAoI)among sensors with the constraints of average energy cost and finite queue stability.To overcome the intractability involving high couplings of such a complex stochastic process,we first focus on the single-sensor time-average AoI optimization problem and convert the constrained Markov decision process(CMDP)into an unconstrained Markov decision process(MDP)by the Lagrangian method.With the infinite-time average energy and AoI expression expended as the Bellman equation,the singlesensor time-average AoI optimization problem can be approached through the steady-state distribution probability.Further,we propose a low-complexity sub-optimal sampling and semi-distributed scheduling scheme for the multi-sensor scenario.The simulation results show that the proposed scheme reduces the MAoI significantly while achieving a balance between the sampling rate and service rate for multiple sensors. 展开更多
关键词 Age of information(AoI) industrial internet of things(IIoT) Markov decision process(MDP) time sensitive systems URLLC
下载PDF
AI-Driven Learning Management Systems:Modern Developments, Challenges and Future Trends during theAge of ChatGPT
5
作者 Sameer Qazi Muhammad Bilal Kadri +4 位作者 Muhammad Naveed Bilal AKhawaja Sohaib Zia Khan Muhammad Mansoor Alam Mazliham Mohd Su’ud 《Computers, Materials & Continua》 SCIE EI 2024年第8期3289-3314,共26页
COVID-19 pandemic restrictions limited all social activities to curtail the spread of the virus.The foremost and most prime sector among those affected were schools,colleges,and universities.The education system of en... COVID-19 pandemic restrictions limited all social activities to curtail the spread of the virus.The foremost and most prime sector among those affected were schools,colleges,and universities.The education system of entire nations had shifted to online education during this time.Many shortcomings of Learning Management Systems(LMSs)were detected to support education in an online mode that spawned the research in Artificial Intelligence(AI)based tools that are being developed by the research community to improve the effectiveness of LMSs.This paper presents a detailed survey of the different enhancements to LMSs,which are led by key advances in the area of AI to enhance the real-time and non-real-time user experience.The AI-based enhancements proposed to the LMSs start from the Application layer and Presentation layer in the form of flipped classroom models for the efficient learning environment and appropriately designed UI/UX for efficient utilization of LMS utilities and resources,including AI-based chatbots.Session layer enhancements are also required,such as AI-based online proctoring and user authentication using Biometrics.These extend to the Transport layer to support real-time and rate adaptive encrypted video transmission for user security/privacy and satisfactory working of AI-algorithms.It also needs the support of the Networking layer for IP-based geolocation features,the Virtual Private Network(VPN)feature,and the support of Software-Defined Networks(SDN)for optimum Quality of Service(QoS).Finally,in addition to these,non-real-time user experience is enhanced by other AI-based enhancements such as Plagiarism detection algorithms and Data Analytics. 展开更多
关键词 Learning management systems chatbots ChatGPT online education internet of things(IoT) artificial intelligence(AI) convolutional neural networks natural language processing
下载PDF
A Systematic Review on the Internet of Medical Things:Techniques,Open Issues,and Future Directions 被引量:1
6
作者 Apurva Sonavane Aditya Khamparia Deepak Gupta 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1525-1550,共26页
IoT usage in healthcare is one of the fastest growing domains all over the world which applies to every age group.Internet of Medical Things(IoMT)bridges the gap between the medical and IoT field where medical devices... IoT usage in healthcare is one of the fastest growing domains all over the world which applies to every age group.Internet of Medical Things(IoMT)bridges the gap between the medical and IoT field where medical devices communicate with each other through a wireless communication network.Advancement in IoMT makes human lives easy and better.This paper provides a comprehensive detailed literature survey to investigate different IoMT-driven applications,methodologies,and techniques to ensure the sustainability of IoMT-driven systems.The limitations of existing IoMTframeworks are also analyzed concerning their applicability in real-time driven systems or applications.In addition to this,various issues(gaps),challenges,and needs in the context of such systems are highlighted.The purpose of this paper is to interpret a rigorous review concept related to IoMT and present significant contributions in the field across the research fraternity.Lastly,this paper discusses the opportunities and prospects of IoMT and discusses various open research problems. 展开更多
关键词 internet ofMedical things(IoMT) healthcare systems sensors PREPROCESSinG RFID remote monitoring devices networks
下载PDF
Thermoelectric energy harvesting for internet of things devices using machine learning:A review
7
作者 Tereza Kucova Michal Prauzek +3 位作者 Jaromir Konecny Darius Andriukaitis Mindaugas Zilys Radek Martinek 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第3期680-700,共21页
Initiatives to minimise battery use,address sustainability,and reduce regular maintenance have driven the challenge to use alternative power sources to supply energy to devices deployed in Internet of Things(IoT)netwo... Initiatives to minimise battery use,address sustainability,and reduce regular maintenance have driven the challenge to use alternative power sources to supply energy to devices deployed in Internet of Things(IoT)networks.As a key pillar of fifth generation(5G)and beyond 5G networks,IoT is estimated to reach 42 billion devices by the year 2025.Thermoelectric generators(TEGs)are solid state energy harvesters which reliably and renewably convert thermal energy into electrical energy.These devices are able to recover lost thermal energy,produce energy in extreme environments,generate electric power in remote areas,and power micro‐sensors.Applying the state of the art,the authorspresent a comprehensive review of machine learning(ML)approaches applied in combination with TEG‐powered IoT devices to manage and predict available energy.The application areas of TEG‐driven IoT devices that exploit as a heat source the temperature differences found in the environment,biological structures,machines,and other technologies are summarised.Based on detailed research of the state of the art in TEG‐powered devices,the authors investigated the research challenges,applied algorithms and application areas of this technology.The aims of the research were to devise new energy prediction and energy management systems based on ML methods,create supervised algorithms which better estimate incoming energy,and develop unsupervised and semi‐supervised ap-proaches which provide adaptive and dynamic operation.The review results indicate that TEGs are a suitable energy harvesting technology for low‐power applications through their scalability,usability in ubiquitous temperature difference scenarios,and long oper-ating lifetime.However,TEGs also have low energy efficiency(around 10%)and require a relatively constant heat source. 展开更多
关键词 adaptive systems intelligent embedded systems internet of things machine learning SENSORS
下载PDF
Application of Physical Unclonable Function for Lightweight Authentication in Internet of Things
8
作者 Ahmad O.Aseeri Sajjad Hussain Chauhdary +2 位作者 Mohammed Saeed Alkatheiri Mohammed A.Alqarni Yu Zhuang 《Computers, Materials & Continua》 SCIE EI 2023年第4期1901-1918,共18页
IoT devices rely on authentication mechanisms to render secure message exchange.During data transmission,scalability,data integrity,and processing time have been considered challenging aspects for a system constituted... IoT devices rely on authentication mechanisms to render secure message exchange.During data transmission,scalability,data integrity,and processing time have been considered challenging aspects for a system constituted by IoT devices.The application of physical unclonable functions(PUFs)ensures secure data transmission among the internet of things(IoT)devices in a simplified network with an efficient time-stamped agreement.This paper proposes a secure,lightweight,cost-efficient reinforcement machine learning framework(SLCR-MLF)to achieve decentralization and security,thus enabling scalability,data integrity,and optimized processing time in IoT devices.PUF has been integrated into SLCR-MLF to improve the security of the cluster head node in the IoT platform during transmission by providing the authentication service for device-to-device communication.An IoT network gathers information of interest from multiple cluster members selected by the proposed framework.In addition,the software-defined secured(SDS)technique is integrated with SLCR-MLF to improve data integrity and optimize processing time in the IoT platform.Simulation analysis shows that the proposed framework outperforms conventional methods regarding the network’s lifetime,energy,secured data retrieval rate,and performance ratio.By enabling the proposed framework,number of residual nodes is reduced to 16%,energy consumption is reduced by up to 50%,almost 30%improvement in data retrieval rate,and network lifetime is improved by up to 1000 msec. 展开更多
关键词 Cyber-physical systems security data aggregation internet of things physical unclonable function swarm intelligences
下载PDF
Anomaly Detection for Industrial Internet of Things Cyberattacks
9
作者 Rehab Alanazi Ahamed Aljuhani 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2361-2378,共18页
The evolution of the Internet of Things(IoT)has empowered modern industries with the capability to implement large-scale IoT ecosystems,such as the Industrial Internet of Things(IIoT).The IIoT is vulnerable to a diver... The evolution of the Internet of Things(IoT)has empowered modern industries with the capability to implement large-scale IoT ecosystems,such as the Industrial Internet of Things(IIoT).The IIoT is vulnerable to a diverse range of cyberattacks that can be exploited by intruders and cause substantial reputational andfinancial harm to organizations.To preserve the confidentiality,integrity,and availability of IIoT networks,an anomaly-based intrusion detection system(IDS)can be used to provide secure,reliable,and efficient IIoT ecosystems.In this paper,we propose an anomaly-based IDS for IIoT networks as an effective security solution to efficiently and effectively overcome several IIoT cyberattacks.The proposed anomaly-based IDS is divided into three phases:pre-processing,feature selection,and classification.In the pre-processing phase,data cleaning and nor-malization are performed.In the feature selection phase,the candidates’feature vectors are computed using two feature reduction techniques,minimum redun-dancy maximum relevance and neighborhood components analysis.For thefinal step,the modeling phase,the following classifiers are used to perform the classi-fication:support vector machine,decision tree,k-nearest neighbors,and linear discriminant analysis.The proposed work uses a new data-driven IIoT data set called X-IIoTID.The experimental evaluation demonstrates our proposed model achieved a high accuracy rate of 99.58%,a sensitivity rate of 99.59%,a specificity rate of 99.58%,and a low false positive rate of 0.4%. 展开更多
关键词 Anomaly detection anomaly-based IDS industrial internet of things(IIoT) IOT industrial control systems(ICSs) X-IIoTID
下载PDF
Unweighted Voting Method to Detect Sinkhole Attack in RPL-Based Internet of Things Networks
10
作者 Shadi Al-Sarawi Mohammed Anbar +2 位作者 Basim Ahmad Alabsi Mohammad Adnan Aladaileh Shaza Dawood Ahmed Rihan 《Computers, Materials & Continua》 SCIE EI 2023年第10期491-515,共25页
The Internet of Things(IoT)consists of interconnected smart devices communicating and collecting data.The Routing Protocol for Low-Power and Lossy Networks(RPL)is the standard protocol for Internet Protocol Version 6(... The Internet of Things(IoT)consists of interconnected smart devices communicating and collecting data.The Routing Protocol for Low-Power and Lossy Networks(RPL)is the standard protocol for Internet Protocol Version 6(IPv6)in the IoT.However,RPL is vulnerable to various attacks,including the sinkhole attack,which disrupts the network by manipulating routing information.This paper proposes the Unweighted Voting Method(UVM)for sinkhole node identification,utilizing three key behavioral indicators:DODAG Information Object(DIO)Transaction Frequency,Rank Harmony,and Power Consumption.These indicators have been carefully selected based on their contribution to sinkhole attack detection and other relevant features used in previous research.The UVM method employs an unweighted voting mechanism,where each voter or rule holds equal weight in detecting the presence of a sinkhole attack based on the proposed indicators.The effectiveness of the UVM method is evaluated using the COOJA simulator and compared with existing approaches.Notably,the proposed approach fulfills power consumption requirements for constrained nodes without increasing consumption due to the deployment design.In terms of detection accuracy,simulation results demonstrate a high detection rate ranging from 90%to 100%,with a low false-positive rate of 0%to 0.2%.Consequently,the proposed approach surpasses Ensemble Learning Intrusion Detection Systems by leveraging three indicators and three supporting rules. 展开更多
关键词 internet of things IPv6 over low power wireless personal area networks Routing Protocol for Low-power and Lossy Networks internet Protocol Version 6 distributed denial of service wireless sensor networks
下载PDF
Architecture design and demand analysis on application layer of standard system for ubiquitous power Internet of Things 被引量:4
11
作者 Jing Zhang Yunying Ye +1 位作者 Chunjin Hu Bin Li 《Global Energy Interconnection》 EI CAS CSCD 2021年第3期304-314,共11页
The ubiquitous power Internet of Things(UPIoT)is an intelligent service system with comprehensive state perception,efficient processing,and flexible application of information.It focuses on each link of the power syst... The ubiquitous power Internet of Things(UPIoT)is an intelligent service system with comprehensive state perception,efficient processing,and flexible application of information.It focuses on each link of the power system and makes full use of the mobile internet,artificial intelligence,and other advanced information and communication technologies in order to realize the inter-human interaction of all things in all links of the power system.This article systematically presents to the national and international organizations and agencies in charge of UPIoT layer standardization the status quo of the research on the Internet of Things(IoT)-related industry standards system.It briefly describes the generic standard classification methods,layered architecture,conceptual model,and system tables in the UPIoT application layer.Based on the principles of inheritance,innovation,and practicability,this study divides the application layer into customer service,power grid operation,integrated energy,and enterprise operation,emerging business and analyzes the standard requirements of these five fields.This study also proposes a standard plan.Finally,it summarizes the research report and provides suggestions for a follow-up work. 展开更多
关键词 Ubiquitous power internet of things(UPIoT) Application layer Standard system Architecture design Demand analysis
下载PDF
Intrusion Detection Systems in Internet of Things and Mobile Ad-Hoc Networks 被引量:2
12
作者 Vasaki Ponnusamy Mamoona Humayun +2 位作者 NZJhanjhi Aun Yichiet Maram Fahhad Almufareh 《Computer Systems Science & Engineering》 SCIE EI 2022年第3期1199-1215,共17页
Internet of Things(IoT)devices work mainly in wireless mediums;requiring different Intrusion Detection System(IDS)kind of solutions to leverage 802.11 header information for intrusion detection.Wireless-specific traff... Internet of Things(IoT)devices work mainly in wireless mediums;requiring different Intrusion Detection System(IDS)kind of solutions to leverage 802.11 header information for intrusion detection.Wireless-specific traffic features with high information gain are primarily found in data link layers rather than application layers in wired networks.This survey investigates some of the complexities and challenges in deploying wireless IDS in terms of data collection methods,IDS techniques,IDS placement strategies,and traffic data analysis techniques.This paper’s main finding highlights the lack of available network traces for training modern machine-learning models against IoT specific intrusions.Specifically,the Knowledge Discovery in Databases(KDD)Cup dataset is reviewed to highlight the design challenges of wireless intrusion detection based on current data attributes and proposed several guidelines to future-proof following traffic capture methods in the wireless network(WN).The paper starts with a review of various intrusion detection techniques,data collection methods and placement methods.The main goal of this paper is to study the design challenges of deploying intrusion detection system in a wireless environment.Intrusion detection system deployment in a wireless environment is not as straightforward as in the wired network environment due to the architectural complexities.So this paper reviews the traditional wired intrusion detection deployment methods and discusses how these techniques could be adopted into the wireless environment and also highlights the design challenges in the wireless environment.The main wireless environments to look into would be Wireless Sensor Networks(WSN),Mobile Ad Hoc Networks(MANET)and IoT as this are the future trends and a lot of attacks have been targeted into these networks.So it is very crucial to design an IDS specifically to target on the wireless networks. 展开更多
关键词 internet of things MANET intrusion detection systems wireless networks
下载PDF
Internet of Things Based Solutions for Transport Network Vulnerability Assessment in Intelligent Transportation Systems 被引量:1
13
作者 Weiwei Liu Yang Tang +3 位作者 Fei Yang Chennan Zhang Dun Cao Gwang-jun Kim 《Computers, Materials & Continua》 SCIE EI 2020年第12期2511-2527,共17页
Intelligent Transportation System(ITS)is essential for effective identification of vulnerable units in the transport network and its stable operation.Also,it is necessary to establish an urban transport network vulner... Intelligent Transportation System(ITS)is essential for effective identification of vulnerable units in the transport network and its stable operation.Also,it is necessary to establish an urban transport network vulnerability assessment model with solutions based on Internet of Things(IoT).Previous research on vulnerability has no congestion effect on the peak time of urban road network.The cascading failure of links or nodes is presented by IoT monitoring system,which can collect data from a wireless sensor network in the transport environment.The IoT monitoring system collects wireless data via Vehicle-to-Infrastructure(V2I)channels to simulate key segments and their failure probability.Finally,the topological structure vulnerability index and the traffic function vulnerability index of road network are extracted from the vulnerability factors.The two indices are standardized by calculating the relative change rate,and the comprehensive index of the consequence after road network unit is in a failure state.Therefore,by calculating the failure probability of road network unit and comprehensive index of road network unit in failure state,the comprehensive vulnerability of road network can be evaluated by a risk calculation formula.In short,the IoT-based solutions to the new vulnerability assessment can help road network planning and traffic management departments to achieve the ITS goals. 展开更多
关键词 internet of things intelligent Transport systems vulnerability assessment transport network
下载PDF
Process Tolerant and Power Efficient SRAM Cell for Internet of Things Applications
14
作者 T.G.Sargunam Lim Way Soong +1 位作者 C.M.R.Prabhu Ajay Kumar Singh 《Computers, Materials & Continua》 SCIE EI 2022年第8期3425-3446,共22页
The use of Internet of Things(IoT)applications become dominant in many systems.Its on-chip data processing and computations are also increasing consistently.The battery enabled and low leakage memory system at subthre... The use of Internet of Things(IoT)applications become dominant in many systems.Its on-chip data processing and computations are also increasing consistently.The battery enabled and low leakage memory system at subthreshold regime is a critical requirement for these IoT applications.The cache memory designed on Static Random-Access Memory(SRAM)cell with features such as low power,high speed,and process tolerance are highly important for the IoT memory system.Therefore,a process tolerant SRAM cell with low power,improved delay and better stability is presented in this research paper.The proposed cell comprises 11 transistors designed with symmetric approach for write operations and single ended circuit for read operations that exhibits an average dynamic power saving of 43.55%and 47.75%for write and 35.59%and 36.56%for read operations compared to 6 T and 8 T SRAM cells.The cell shows an improved write delay of 26.46%and 37.16%over 6 T and 8T and read delay is lowered by 50.64%and 72.90%against 6 T and 10 T cells.The symmetric design used in core latch to improve the write noise margin(WNM)by 17.78%and 6.67%whereas the single ended separate read circuit improves the Read Static Noise Margin(RSNM)by 1.88x and 0.33x compared to 6 T and 8T cells.The read power delay product and write power delay product are lower by 1.94x,1.39x and 0.17x,2.02x than 6 T and 8 T cells respectively.The lower variability from 5000 samples validates the robustness of the proposed cell.The simulations are carried out in Cadence virtuoso simulator tool with Generic Process Design Kit(GPDK)45 nm technology file in this work. 展开更多
关键词 SRAM cell low power process efficient read stability write ability static noise margin PVT variation internet of things
下载PDF
High Performance Electrically Small Huygens Rectennas Enable Wirelessly Powered Internet of Things Sensing Applications:A Review
15
作者 Wei Lin Richard W.Ziolkowski 《Engineering》 SCIE EI 2022年第4期42-59,共18页
Far-field wireless power transfer(WPT)is a major breakthrough technology that will enable the many anticipated ubiquitous Internet of Things(IoT)applications associated with fifth generation(5G),sixth generation(6G),a... Far-field wireless power transfer(WPT)is a major breakthrough technology that will enable the many anticipated ubiquitous Internet of Things(IoT)applications associated with fifth generation(5G),sixth generation(6G),and beyond wireless ecosystems.Rectennas,which are the combination of rectifying circuits and antennas,are the most critical components in far-field WPT systems.However,compact application devices require even smaller integrated rectennas that simultaneously have large electromagnetic wave capture capabilities,high alternating current(AC)-to-direct current(DC)(AC-to-DC)conversion efficiencies,and facilitate a multifunctional wireless performance.This paper reviews various rectenna miniaturization techniques such as meandered planar inverted-F antenna(PIFA)rectennas;miniaturized monopole-and dipole-based rectennas;fractal loop and patch rectennas;dielectric-loaded rectennas;and electrically small near-field resonant parasitic rectennas.Their performance characteristics are summarized and then compared with our previously developed electrically small Huygens rectennas that are proven to be more suitable for IoT applications.They have been tailored,for example,to achieve batteryfree IoT sensors as is demonstrated in this paper.Battery-free,wirelessly powered devices are smaller and lighter in weight in comparison to battery-powered devices.Moreover,they are environmentally friendly and,hence,have a significant societal benefit.A series of high-performance electrically small Huygens rectennas are presented including Huygens linearly-polarized(HLP)and circularly-polarized(HCP)rectennas;wirelessly powered IoT sensors based on these designs;and a dual-functional HLP rectenna and antenna system.Finally,two linear uniform HLP rectenna array systems are considered for significantly larger wireless power capture.Example arrays illustrate how they can be integrated advantageously with DC or radio frequency(RF)power-combining schemes for practical IoT applications. 展开更多
关键词 ANTENNA Array Cardioid pattern Electrically small antenna Huygens dipole antenna internet of things(IoT) RECTENNA Rectifier circuit Wireless power transfer
下载PDF
A Novel Secure Data Transmission Scheme in Industrial Internet of Things 被引量:26
16
作者 Hongwen Hui Chengcheng Zhou +1 位作者 Shenggang Xu Fuhong Lin 《China Communications》 SCIE CSCD 2020年第1期73-88,共16页
The industrial Internet of Things(IoT)is a trend of factory development and a basic condition of intelligent factory.It is very important to ensure the security of data transmission in industrial IoT.Applying a new ch... The industrial Internet of Things(IoT)is a trend of factory development and a basic condition of intelligent factory.It is very important to ensure the security of data transmission in industrial IoT.Applying a new chaotic secure communication scheme to address the security problem of data transmission is the main contribution of this paper.The scheme is proposed and studied based on the synchronization of different-structure fractional-order chaotic systems with different order.The Lyapunov stability theory is used to prove the synchronization between the fractional-order drive system and the response system.The encryption and decryption process of the main data signals is implemented by using the n-shift encryption principle.We calculate and analyze the key space of the scheme.Numerical simulations are introduced to show the effectiveness of theoretical approach we proposed. 展开更多
关键词 industrial internet of things data transmission secure communication fractional-order chaotic systems
下载PDF
A roadmap for security challenges in the Internet of Things 被引量:7
17
作者 Arbia Riahi Sfar Enrico Natalizio +1 位作者 Yacine Challal Zied Chtourou 《Digital Communications and Networks》 SCIE 2018年第2期118-137,共20页
Unquestionably, communicating entities (object, or things) in the Internet of Things (IoT) context are playing an active role in human activities, systems and processes. The high connectivity of intelligent object... Unquestionably, communicating entities (object, or things) in the Internet of Things (IoT) context are playing an active role in human activities, systems and processes. The high connectivity of intelligent objects and their severe constraints lead to many security challenges, which are not included in the classical formulation of security problems and solutions. The Security Shield for IoT has been identified by DARPA (Defense Advanced Research Projects Agency) as one of the four projects with a potential impact broader than the Internet itself. To help interested researchers contribute to this research area, an overview of the loT security roadmap overview is presented in this paper based on a novel cognitive and systemic approach. The role of each component of the approach is explained, we also study its interactions with the other main components, and their impact on the overall. A case study is presented to highlight the components and interactions of the systemic and cognitive approach. Then, security questions about privacy, trust, identification, and access control are discussed. According to the novel taxonomy of the loT framework, different research challenges are highlighted, important solutions and research activities are revealed, and interesting research directions are proposed. In addition, current stan dardization activities are surveyed and discussed to the ensure the security of loT components and applications. 展开更多
关键词 internet of things Systemic and cognitive approach SECURITY PRIVACY Trust Identification Access control
下载PDF
A Green Paradigm for Internet of Things: Ambient Backscatter Communications 被引量:9
18
作者 Wei Zhang Yao Qin +4 位作者 Wenjing Zhao Minzheng Jia Qiang Liu Ruisi He Bo Ai 《China Communications》 SCIE CSCD 2019年第7期109-119,共11页
Internet of Things (IoT) has attracted extensive interest from both academia and industries, and is recognized as an ultimate infrastructure to connect everything at anytime and anywhere. The implementation of IoT gen... Internet of Things (IoT) has attracted extensive interest from both academia and industries, and is recognized as an ultimate infrastructure to connect everything at anytime and anywhere. The implementation of IoT generally faces the challenges from energy constraint and implementation cost. In this paper, we will introduce a new green communication paradigm, the ambient backscatter (AmBC), that could utilize the environmental wireless signals for both powering a tiny-cost device and backscattering the information symbols. Specifically, we will present the basic principles of AmBC, analyze its features and advantages, suggest its open problems, and predict its potential applications for our future IoT. 展开更多
关键词 AMBIENT backscatter (AmBC) RF-powered device internet of things (IoT) battery-free TAG wire-less sensor
下载PDF
Progress and prospects of innovative coal-fired power plants within the energy internet 被引量:7
19
作者 Yongping Yang Chengzhou Li +1 位作者 Ningling Wang Zhiping Yang 《Global Energy Interconnection》 2019年第2期160-179,共20页
The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy ... The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy internet. Progressive penetration of intermittent renewable energy sources into the energy system has led to unprecedented challenges to the currently wide use of coal-fired power generation technologies. Here, the applications and prospects of advanced coal-fired power generation technologies are analyzed. These technologies can be summarized into three categories:(1) large-scale and higher parameters coal-fired power generation technologies, including 620/650/700 oC ultra-supercritical thermal power and double reheat ultra-supercritical coal-fired power generation technologies;(2) system innovation and specific, highefficiency thermal cycles, which consist of renewable energy-aided coal-fired power generation technologies, a supercritical CO_2 Brayton cycle for coal-fired power plants, large-scale air-cooling coal-fired power plant technologies, and innovative layouts for waste heat utilization and enhanced energy cascade utilization;(3) coal-fired power generation combined with poly-generation technologies, which are represented by integrated gasification combined cycle(IGCC) and integrated gasification fuel cell(IGFC) technologies. Concerning the existing coal-fired power units, which are responsible for peak shaving, possible strategies for enhancing flexibility and operational stability are discussed. Furthermore, future trends for coal-fired power plants coupled with cyber-physical system(CPS) technologies are introduced. The development of advanced, coal-fired power generation technologies demonstrates the progress of science and is suitable for the sustainable development of human society. 展开更多
关键词 En ergy in ternet Coal-fired power GEN eration FLEXIBILITY Cyber-physical system Smart power plant
下载PDF
Security Architecture on the Trusting Internet of Things 被引量:2
20
作者 Bing Zhang Xin-Xin Ma Zhi-Guang Qin 《Journal of Electronic Science and Technology》 CAS 2011年第4期364-367,共4页
By analyzing existed Internet of Things' system security vulnerabilities, a security architecture on trusting one is constructed. In the infrastructure, an off-line identity authentication based on the combined publi... By analyzing existed Internet of Things' system security vulnerabilities, a security architecture on trusting one is constructed. In the infrastructure, an off-line identity authentication based on the combined public key (CPK) mechanism is proposed, which solves the problems about a mass amount of authentications and the cross-domain authentication by integrating nodes' validity of identity authentication and uniqueness of identification. Moreover, the proposal of constructing nodes' authentic identification, valid authentication and credible communication connection at the application layer through the perception layer impels the formation of trust chain and relationship among perceptional nodes. Consequently, a trusting environment of the Internet of Things is built, by which a guidance of designing the trusted one would be provided. 展开更多
关键词 Combined public key elliptic curves cryptography internet of things radio frequency identification security system trusting system.
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部