Energy conservation is a significant task in the Internet of Things(IoT)because IoT involves highly resource-constrained devices.Clustering is an effective technique for saving energy by reducing duplicate data.In a c...Energy conservation is a significant task in the Internet of Things(IoT)because IoT involves highly resource-constrained devices.Clustering is an effective technique for saving energy by reducing duplicate data.In a clustering protocol,the selection of a cluster head(CH)plays a key role in prolonging the lifetime of a network.However,most cluster-based protocols,including routing protocols for low-power and lossy networks(RPLs),have used fuzzy logic and probabilistic approaches to select the CH node.Consequently,early battery depletion is produced near the sink.To overcome this issue,a lion optimization algorithm(LOA)for selecting CH in RPL is proposed in this study.LOA-RPL comprises three processes:cluster formation,CH selection,and route establishment.A cluster is formed using the Euclidean distance.CH selection is performed using LOA.Route establishment is implemented using residual energy information.An extensive simulation is conducted in the network simulator ns-3 on various parameters,such as network lifetime,power consumption,packet delivery ratio(PDR),and throughput.The performance of LOA-RPL is also compared with those of RPL,fuzzy rule-based energyefficient clustering and immune-inspired routing(FEEC-IIR),and the routing scheme for IoT that uses shuffled frog-leaping optimization algorithm(RISARPL).The performance evaluation metrics used in this study are network lifetime,power consumption,PDR,and throughput.The proposed LOARPL increases network lifetime by 20%and PDR by 5%–10%compared with RPL,FEEC-IIR,and RISA-RPL.LOA-RPL is also highly energy-efficient compared with other similar routing protocols.展开更多
Mobile ad hoc network(MANET)is a dynamically reconfigurable wireless network with time-variable infrastructure.Given that nodes are highly mobile,MANET’s topology often changes.These changes increase the difficulty i...Mobile ad hoc network(MANET)is a dynamically reconfigurable wireless network with time-variable infrastructure.Given that nodes are highly mobile,MANET’s topology often changes.These changes increase the difficulty in finding the routes that the packets use when they are routed.This study proposes an algorithm called genetic algorithm-based location-aided routing(GALAR)to enhance the MANET routing protocol efficiency.The GALAR algorithm maintains an adaptive update of the node location information by adding the transmitting node location information to the routing packet and selecting the transmitting node to carry the packets to their destination.The GALAR was constructed based on a genetic optimization scheme that considers all contributing factors in the delivery behavior using criterion function optimization.Simulation results showed that the GALAR algorithm can make the probability of packet delivery ratio more than 99%with less network overhead.Moreover,GALAR was compared to other algorithms in terms of different network evaluation measures.The GALAR algorithm significantly outperformed the other algorithms that were used in the study.展开更多
Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effect...Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.展开更多
Wireless sensor network (WSN) has been widely used due to its vastrange of applications. The energy problem is one of the important problems influencingthe complete application. Sensor nodes use very small batteries a...Wireless sensor network (WSN) has been widely used due to its vastrange of applications. The energy problem is one of the important problems influencingthe complete application. Sensor nodes use very small batteries as a powersource and replacing them is not an easy task. With this restriction, the sensornodes must conserve their energy and extend the network lifetime as long as possible.Also, these limits motivate much of the research to suggest solutions in alllayers of the protocol stack to save energy. So, energy management efficiencybecomes a key requirement in WSN design. The efficiency of these networks ishighly dependent on routing protocols directly affecting the network lifetime.Clustering is one of the most popular techniques preferred in routing operations.In this work we propose a novel energy-efficient protocol for WSN based on a batalgorithm called ECO-BAT (Energy Consumption Optimization with BAT algorithmfor WSN) to prolong the network lifetime. We use an objective function thatgenerates an optimal number of sensor clusters with cluster heads (CH) to minimizeenergy consumption. The performance of the proposed approach is comparedwith Low-Energy Adaptive Clustering Hierarchy (LEACH) and EnergyEfficient cluster formation in wireless sensor networks based on the Multi-Objective Bat algorithm (EEMOB) protocols. The results obtained are interestingin terms of energy-saving and prolongation of the network lifetime.展开更多
Data center networks may comprise tens or hundreds of thousands of nodes,and,naturally,suffer from frequent software and hardware failures as well as link congestions.Packets are routed along the shortest paths with s...Data center networks may comprise tens or hundreds of thousands of nodes,and,naturally,suffer from frequent software and hardware failures as well as link congestions.Packets are routed along the shortest paths with sufficient resources to facilitate efficient network utilization and minimize delays.In such dynamic networks,links frequently fail or get congested,making the recalculation of the shortest paths a computationally intensive problem.Various routing protocols were proposed to overcome this problem by focusing on network utilization rather than speed.Surprisingly,the design of fast shortest-path algorithms for data centers was largely neglected,though they are universal components of routing protocols.Moreover,parallelization techniques were mostly deployed for random network topologies,and not for regular topologies that are often found in data centers.The aim of this paper is to improve scalability and reduce the time required for the shortest-path calculation in data center networks by parallelization on general-purpose hardware.We propose a novel algorithm that parallelizes edge relaxations as a faster and more scalable solution for popular data center topologies.展开更多
Interconnected devices and intelligent applications have slashed human intervention in the Internet of Things(IoT),making it possible to accomplish tasks with less human interaction.However,it faces many problems,incl...Interconnected devices and intelligent applications have slashed human intervention in the Internet of Things(IoT),making it possible to accomplish tasks with less human interaction.However,it faces many problems,including lower capacity links,energy utilization,enhancement of resources and limited resources due to its openness,heterogeneity,limited resources and extensiveness.It is challenging to route packets in such a constrained environment.In an IoT network constrained by limited resources,minimal routing control overhead is required without packet loss.Such constrained environments can be improved through the optimal routing protocol.It is challenging to route packets in such a constrained environment.Thus,this work is motivated to present an efficient routing protocol for enhancing the lifetime of the IoT network.Lightweight On-demand Ad hoc Distance-vector Routing Protocol—Next Generation(LOADng)protocol is an extended version of the Ad Hoc On-Demand Distance Vector(AODV)protocol.Unlike AODV,LOADng is a lighter version that forbids the intermediate nodes on the route to send a route reply(RREP)for the route request(RREQ),which originated from the source.A resource-constrained IoT network demands minimal routing control overhead and faster packet delivery.So,in this paper,the parameters of the LOADng routing protocol are optimized using the black widow optimization(BWO)algorithm to reduce the control overhead and delay.Furthermore,the performance of the proposed model is analyzed with the default LOADng in terms of delay,delivery ratio and overhead.Obtained results show that the LOADng-BWO protocol outperforms the conventional LOADng protocol.展开更多
In the wireless sensor networks, high efficient data routing for the limited energy resource networks is an important issue. By introducing Antcolony algorithm, this paper proposes the wireless sensor network routing ...In the wireless sensor networks, high efficient data routing for the limited energy resource networks is an important issue. By introducing Antcolony algorithm, this paper proposes the wireless sensor network routing algorithm based on LEACH. During the construction of sensor network clusters, to avoid the node premature death because of the energy consumption, only the nodes whose residual energy is higher than the average energy can be chosen as the cluster heads. The method of repeated division is used to divide the clusters in sensor networks so that the numbers of the nodes in each cluster are balanced. The basic thought of ant-colony algorithm is adopted to realize the data routing between the cluster heads and sink nodes, and the maintenance of routing. The analysis and simulation showed that the proposed routing protocol not only can reduce the energy consumption, balance the energy consumption between nodes, but also prolong the network lifetime.展开更多
A mobile ad hoc network(MANET)involves a group of wireless mobile nodes which create an impermanent network with no central authority and infrastructure.The nodes in the MANET are highly mobile and it results in adequ...A mobile ad hoc network(MANET)involves a group of wireless mobile nodes which create an impermanent network with no central authority and infrastructure.The nodes in the MANET are highly mobile and it results in adequate network topology,link loss,and increase the re-initialization of the route discovery process.Route planning in MANET is a multi-hop communication process due to the restricted transmission range of the nodes.Location aided routing(LAR)is one of the effective routing protocols in MANET which suffers from the issue of high energy consumption.Though few research works have focused on resolving energy consumption problem in LAR,energy efficiency still remains a major design issue.In this aspect,this study introduces an energy aware metaheuristic optimization with LAR(EAMO-LAR)protocol for MANETs.The EAMO-LAR protocol makes use of manta ray foraging optimization algorithm(MRFO)to help the searching process for the individual solution to be passed to the LAR protocol.The fitness value of the created solutions is determined next to pass the solutions to the objective function.The MRFO algorithm is incorporated into the LAR protocol in the EAMO-LAR protocol to reduce the desired energy utilization.To ensure the improved routing efficiency of the proposed EAMO-LAR protocol,a series of simulations take place.The resultant experimental values pointed out the supreme outcome of the EAMO-LAR protocol over the recently compared methods.The resultant values demonstrated that the EAMO-LAR protocol has accomplished effectual results over the other existing techniques.展开更多
This paper presents a novel trust model based on multiple decision factor theory (MDFT) and a trust routing algorithm based on MDFT to exactly evaluate routing node trust and establish a trustworthy routing path. MD...This paper presents a novel trust model based on multiple decision factor theory (MDFT) and a trust routing algorithm based on MDFT to exactly evaluate routing node trust and establish a trustworthy routing path. MDFT integrates four dimensional trust decision factors including behavior, state, recommend and node liveness to realize an exactly finer-grained trust evaluation. On the basis of MDFT, a trust routing algorithm is presented and validated in open shortest path first (OSPF) protocol. Simulation resuRs show that the algorithm can reflect the routing node trust accurately and has better dynamic response ability. Under the circumstance of existing deceptive nodes, the algorithm has better anti-deception performance and higher attack node detection rate than conventional algorithm.展开更多
Low Energy Adaptive Clustering Hierarchy(LEACH)is a routing algorithm in agricultural wireless multimedia sensor networks(WMSNs)that includes two kinds of improved protocol,LEACH_D and LEACH_E.In this study,obstacles ...Low Energy Adaptive Clustering Hierarchy(LEACH)is a routing algorithm in agricultural wireless multimedia sensor networks(WMSNs)that includes two kinds of improved protocol,LEACH_D and LEACH_E.In this study,obstacles were overcome in widely used protocols.An improved algorithm was proposed to solve existing problems,such as energy source restriction,communication distance,and energy of the nodes.The optimal number of clusters was calculated by the first-order radio model of the improved algorithm to determine the percentage of the cluster heads in the network.High energy and the near sink nodes were chosen as cluster heads based on the residual energy of the nodes and the distance between the nodes to the sink node.At the same time,the K-means clustering analysis method was used for equally assigning the nodes to several clusters in the network.Both simulation and the verification results showed that the survival number of the proposed algorithm LEACH-ED increased by 66%.Moreover,the network load was high and network lifetime was longer.The mathematical model between the average voltage of nodes(y)and the running time(x)was concluded in the equation y=−0.0643x+4.3694,and the correlation coefficient was R2=0.9977.The research results can provide a foundation and method for the design and simulation of the routing algorithm in agricultural WMSNs.展开更多
A fuzzy requirement based strategy for QoS service in broadband networks was presented. With the analysis of QoS service in ATM networks and broadband IP networks, it gave a requirement based strategy for QoS service...A fuzzy requirement based strategy for QoS service in broadband networks was presented. With the analysis of QoS service in ATM networks and broadband IP networks, it gave a requirement based strategy for QoS service application with Fuzzy language evaluation principles. The requirement parameters are chosen according to the WANT/COST rule, and a fuzzy set is constructed to realize the fuzzy determinant. The simulation results show that it is useful to evaluate the QoS service in broadband networks, and to effectively simplify the access protocols and solve the billing issues in broadband networks.展开更多
One algorithm and one method for PNNI(Private Network to Network Interface) routing were presented. The algorithm is OIL (Older Is Leader) algorithms for Peer Group selection, and the method is the DOO (Distributed ob...One algorithm and one method for PNNI(Private Network to Network Interface) routing were presented. The algorithm is OIL (Older Is Leader) algorithms for Peer Group selection, and the method is the DOO (Distributed object-oriented) method for HDOS (Hierarchy Distributed-Object System), PNNI systems and IP(Internet Protocol) networks. Based on the specifications from ATM forum, and the creative ideas from Distributed System realization, this paper studies and analyzes the private ATM network environment. The OIL algorithm and the DOO method are both for PNNI routing protocol. Through the PNNI simulation, the availability and robustness are proved for the above two improvements.展开更多
Considering wireless sensor network characteristics,this paper uses network simulator,version2(NS-2)algorithm to improve Ad hoc on-demand distance vector(AODV)routing algorithm,so that it can be applied to wireless se...Considering wireless sensor network characteristics,this paper uses network simulator,version2(NS-2)algorithm to improve Ad hoc on-demand distance vector(AODV)routing algorithm,so that it can be applied to wireless sensor networks.After studying AODV routing protocol,a new algorithm called Must is brought up.This paper introduces the background and algorithm theory of Must,and discusses the details about how to implement Must algorithm.At last,using network simulator(NS-2),the performance of Must is evaluated and compared with that of AODV.Simulation results show that the network using Must algorithm has perfect performance.展开更多
The purpose of this paper is to solve the problem of Ad Hoc network routing protocol using a Genetic Algorithm based approach. In particular, the greater reliability and efficiency, in term of duration of communicatio...The purpose of this paper is to solve the problem of Ad Hoc network routing protocol using a Genetic Algorithm based approach. In particular, the greater reliability and efficiency, in term of duration of communication paths, due to the introduction of Genetic Classifier is demonstrated.展开更多
Most of the existing opportunistic network routing protocols are based on some type of utility function that is directly or indirectly dependent on the past behavior of devices. The past behavior or history of a devic...Most of the existing opportunistic network routing protocols are based on some type of utility function that is directly or indirectly dependent on the past behavior of devices. The past behavior or history of a device is usually referred to as contacts that the device had in the past. Whatever may be the metric of history, most of these routing protocols work on the realistic premise that node mobility is not truly random. In contrast, there are several oracles based methods where such oracles assist these methods to gain access to information that is unrealistic in the real world. Although, such oracles are unrealistic, they can help to understand the nature and behavior of underlying networks. In this paper, we have analyzed the gap between these two extremes. We have performed max-flow computations on three different opportunistic networks and then compared the results by performing max-flow computations on history generated by the respective networks. We have found that the correctness of the history based prediction of history is dependent on the dense nature of the underlying network. Moreover, the history based prediction can deliver correct paths but cannot guarantee their absolute reliability.展开更多
Clustering provides an effective way to prolong the lifetime of wireless sensor networks. One of the major issues of a clustering protocol is selecting an optimal group of sensor nodes as the cluster heads to divide t...Clustering provides an effective way to prolong the lifetime of wireless sensor networks. One of the major issues of a clustering protocol is selecting an optimal group of sensor nodes as the cluster heads to divide the network. Another is the mode of inter-cluster communication. In this paper, an energy-balanced unequal clustering (EBUC) protocol is proposed and evaluated. By using the particle swarm optimization (PSO) algorithm, EBUC partitions all nodes into clusters of unequal size, in which the clusters closer to the base station have smaller size. The cluster heads of these clusters can preserve some more energy for the inter-cluster relay traffic and the 'hot-spots' problem can be avoided. For inter-cluster communication, EBUC adopts an energy-aware multihop routing to reduce the energy consumption of the cluster heads. Simulation results demonstrate that the protocol can efficiently decrease the dead speed of the nodes and prolong the network lifetime.展开更多
Grouping nodes gives better performance to the whole network by diminishing the average network delay and avoiding unnecessary message forwarding and additional overhead. Many routing protocols for ad-hoc and sensor n...Grouping nodes gives better performance to the whole network by diminishing the average network delay and avoiding unnecessary message forwarding and additional overhead. Many routing protocols for ad-hoc and sensor networks have been designed but none of them are based on groups. In this paper, we will start defining group-based topologies, and then we will show how some wireless ad hoc sensor networks (WAHSN) routing protocols perform when the nodes are arranged in groups. In our proposal connections between groups are established as a function of the proximity of the nodes and the neighbor's available capacity (based on the node's energy). We describe the architecture proposal, the messages that are needed for the proper operation and its mathematical description. We have also simulated how much time is needed to propagate information between groups. Finally, we will show a comparison with other architectures.展开更多
The topology architecture, characteristics and routing technologies ofbroadband satellite net-works are studied in this paper. The authors propose the routing scheme ofsatellite networks and design a time and space-ba...The topology architecture, characteristics and routing technologies ofbroadband satellite net-works are studied in this paper. The authors propose the routing scheme ofsatellite networks and design a time and space-based distributed routing algorithm whose complexityis O (1). Simulation results aiming at satellite mobility show that the new algorithm can determinethe minimum propagation delay paths effectively.展开更多
基金This research was supported by X-mind Corps program of National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(No.2019H1D8A1105622)the Soonchunhyang University Research Fund.
文摘Energy conservation is a significant task in the Internet of Things(IoT)because IoT involves highly resource-constrained devices.Clustering is an effective technique for saving energy by reducing duplicate data.In a clustering protocol,the selection of a cluster head(CH)plays a key role in prolonging the lifetime of a network.However,most cluster-based protocols,including routing protocols for low-power and lossy networks(RPLs),have used fuzzy logic and probabilistic approaches to select the CH node.Consequently,early battery depletion is produced near the sink.To overcome this issue,a lion optimization algorithm(LOA)for selecting CH in RPL is proposed in this study.LOA-RPL comprises three processes:cluster formation,CH selection,and route establishment.A cluster is formed using the Euclidean distance.CH selection is performed using LOA.Route establishment is implemented using residual energy information.An extensive simulation is conducted in the network simulator ns-3 on various parameters,such as network lifetime,power consumption,packet delivery ratio(PDR),and throughput.The performance of LOA-RPL is also compared with those of RPL,fuzzy rule-based energyefficient clustering and immune-inspired routing(FEEC-IIR),and the routing scheme for IoT that uses shuffled frog-leaping optimization algorithm(RISARPL).The performance evaluation metrics used in this study are network lifetime,power consumption,PDR,and throughput.The proposed LOARPL increases network lifetime by 20%and PDR by 5%–10%compared with RPL,FEEC-IIR,and RISA-RPL.LOA-RPL is also highly energy-efficient compared with other similar routing protocols.
基金funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.
文摘Mobile ad hoc network(MANET)is a dynamically reconfigurable wireless network with time-variable infrastructure.Given that nodes are highly mobile,MANET’s topology often changes.These changes increase the difficulty in finding the routes that the packets use when they are routed.This study proposes an algorithm called genetic algorithm-based location-aided routing(GALAR)to enhance the MANET routing protocol efficiency.The GALAR algorithm maintains an adaptive update of the node location information by adding the transmitting node location information to the routing packet and selecting the transmitting node to carry the packets to their destination.The GALAR was constructed based on a genetic optimization scheme that considers all contributing factors in the delivery behavior using criterion function optimization.Simulation results showed that the GALAR algorithm can make the probability of packet delivery ratio more than 99%with less network overhead.Moreover,GALAR was compared to other algorithms in terms of different network evaluation measures.The GALAR algorithm significantly outperformed the other algorithms that were used in the study.
文摘Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.
文摘Wireless sensor network (WSN) has been widely used due to its vastrange of applications. The energy problem is one of the important problems influencingthe complete application. Sensor nodes use very small batteries as a powersource and replacing them is not an easy task. With this restriction, the sensornodes must conserve their energy and extend the network lifetime as long as possible.Also, these limits motivate much of the research to suggest solutions in alllayers of the protocol stack to save energy. So, energy management efficiencybecomes a key requirement in WSN design. The efficiency of these networks ishighly dependent on routing protocols directly affecting the network lifetime.Clustering is one of the most popular techniques preferred in routing operations.In this work we propose a novel energy-efficient protocol for WSN based on a batalgorithm called ECO-BAT (Energy Consumption Optimization with BAT algorithmfor WSN) to prolong the network lifetime. We use an objective function thatgenerates an optimal number of sensor clusters with cluster heads (CH) to minimizeenergy consumption. The performance of the proposed approach is comparedwith Low-Energy Adaptive Clustering Hierarchy (LEACH) and EnergyEfficient cluster formation in wireless sensor networks based on the Multi-Objective Bat algorithm (EEMOB) protocols. The results obtained are interestingin terms of energy-saving and prolongation of the network lifetime.
基金This work was supported by the Serbian Ministry of Science and Education(project TR-32022)by companies Telekom Srbija and Informatika.
文摘Data center networks may comprise tens or hundreds of thousands of nodes,and,naturally,suffer from frequent software and hardware failures as well as link congestions.Packets are routed along the shortest paths with sufficient resources to facilitate efficient network utilization and minimize delays.In such dynamic networks,links frequently fail or get congested,making the recalculation of the shortest paths a computationally intensive problem.Various routing protocols were proposed to overcome this problem by focusing on network utilization rather than speed.Surprisingly,the design of fast shortest-path algorithms for data centers was largely neglected,though they are universal components of routing protocols.Moreover,parallelization techniques were mostly deployed for random network topologies,and not for regular topologies that are often found in data centers.The aim of this paper is to improve scalability and reduce the time required for the shortest-path calculation in data center networks by parallelization on general-purpose hardware.We propose a novel algorithm that parallelizes edge relaxations as a faster and more scalable solution for popular data center topologies.
文摘Interconnected devices and intelligent applications have slashed human intervention in the Internet of Things(IoT),making it possible to accomplish tasks with less human interaction.However,it faces many problems,including lower capacity links,energy utilization,enhancement of resources and limited resources due to its openness,heterogeneity,limited resources and extensiveness.It is challenging to route packets in such a constrained environment.In an IoT network constrained by limited resources,minimal routing control overhead is required without packet loss.Such constrained environments can be improved through the optimal routing protocol.It is challenging to route packets in such a constrained environment.Thus,this work is motivated to present an efficient routing protocol for enhancing the lifetime of the IoT network.Lightweight On-demand Ad hoc Distance-vector Routing Protocol—Next Generation(LOADng)protocol is an extended version of the Ad Hoc On-Demand Distance Vector(AODV)protocol.Unlike AODV,LOADng is a lighter version that forbids the intermediate nodes on the route to send a route reply(RREP)for the route request(RREQ),which originated from the source.A resource-constrained IoT network demands minimal routing control overhead and faster packet delivery.So,in this paper,the parameters of the LOADng routing protocol are optimized using the black widow optimization(BWO)algorithm to reduce the control overhead and delay.Furthermore,the performance of the proposed model is analyzed with the default LOADng in terms of delay,delivery ratio and overhead.Obtained results show that the LOADng-BWO protocol outperforms the conventional LOADng protocol.
基金Acknowledgements Supported by the Fundamental Research Funds for the Central Universities(72104988), The National High Technology Research and Development Program of China ( 2009AA01 Z204, 2007AA01Z429, 2007AA01Z405), The post doctor science foundation of China (20090451495, 20090461415) The National Natural science foundation of China (60874085, 60633020, 60803151 ), The Natural Science Basic Research Plan in Shaanxi Province of China (Program No. SJ08F13), The Aviation Sci- ence Foundation of China (2007ZD31003, 2008ZD31001 )
文摘In the wireless sensor networks, high efficient data routing for the limited energy resource networks is an important issue. By introducing Antcolony algorithm, this paper proposes the wireless sensor network routing algorithm based on LEACH. During the construction of sensor network clusters, to avoid the node premature death because of the energy consumption, only the nodes whose residual energy is higher than the average energy can be chosen as the cluster heads. The method of repeated division is used to divide the clusters in sensor networks so that the numbers of the nodes in each cluster are balanced. The basic thought of ant-colony algorithm is adopted to realize the data routing between the cluster heads and sink nodes, and the maintenance of routing. The analysis and simulation showed that the proposed routing protocol not only can reduce the energy consumption, balance the energy consumption between nodes, but also prolong the network lifetime.
基金This research was supported by the MSIT(Ministry of Science and ICT),Korea,under the ICAN(ICT Challenge and Advanced Network of HRD)program(IITP-2021-2020-0-01832)supervised by the IITP(Institute of Information&Communications Technology Planning&Evaluation)and the Soonchunhyang University Research Fund.
文摘A mobile ad hoc network(MANET)involves a group of wireless mobile nodes which create an impermanent network with no central authority and infrastructure.The nodes in the MANET are highly mobile and it results in adequate network topology,link loss,and increase the re-initialization of the route discovery process.Route planning in MANET is a multi-hop communication process due to the restricted transmission range of the nodes.Location aided routing(LAR)is one of the effective routing protocols in MANET which suffers from the issue of high energy consumption.Though few research works have focused on resolving energy consumption problem in LAR,energy efficiency still remains a major design issue.In this aspect,this study introduces an energy aware metaheuristic optimization with LAR(EAMO-LAR)protocol for MANETs.The EAMO-LAR protocol makes use of manta ray foraging optimization algorithm(MRFO)to help the searching process for the individual solution to be passed to the LAR protocol.The fitness value of the created solutions is determined next to pass the solutions to the objective function.The MRFO algorithm is incorporated into the LAR protocol in the EAMO-LAR protocol to reduce the desired energy utilization.To ensure the improved routing efficiency of the proposed EAMO-LAR protocol,a series of simulations take place.The resultant experimental values pointed out the supreme outcome of the EAMO-LAR protocol over the recently compared methods.The resultant values demonstrated that the EAMO-LAR protocol has accomplished effectual results over the other existing techniques.
基金supported by the National Natural Science Foundation of China (61121061, 61161140320)The National Key Technology R&D Program (2012BAH38B02)
文摘This paper presents a novel trust model based on multiple decision factor theory (MDFT) and a trust routing algorithm based on MDFT to exactly evaluate routing node trust and establish a trustworthy routing path. MDFT integrates four dimensional trust decision factors including behavior, state, recommend and node liveness to realize an exactly finer-grained trust evaluation. On the basis of MDFT, a trust routing algorithm is presented and validated in open shortest path first (OSPF) protocol. Simulation resuRs show that the algorithm can reflect the routing node trust accurately and has better dynamic response ability. Under the circumstance of existing deceptive nodes, the algorithm has better anti-deception performance and higher attack node detection rate than conventional algorithm.
基金Project on the Integration of Industry,Education and Research of Henan Province(Grant No.142107000055,162107000026)Scientific and Technological Project of Henan Province(Grant No.152102210190,162102210202)+2 种基金Natural Science Foundation of Henan Educational Committee(Grant No.14B416004,14A416002 and 13A416264)Key Project of Henan Tobacco Company(HYKJ201316)Innovation Ability Foundation of Natural Science(Grant No.2013ZCX002)of Henan University of Science and Technology.
文摘Low Energy Adaptive Clustering Hierarchy(LEACH)is a routing algorithm in agricultural wireless multimedia sensor networks(WMSNs)that includes two kinds of improved protocol,LEACH_D and LEACH_E.In this study,obstacles were overcome in widely used protocols.An improved algorithm was proposed to solve existing problems,such as energy source restriction,communication distance,and energy of the nodes.The optimal number of clusters was calculated by the first-order radio model of the improved algorithm to determine the percentage of the cluster heads in the network.High energy and the near sink nodes were chosen as cluster heads based on the residual energy of the nodes and the distance between the nodes to the sink node.At the same time,the K-means clustering analysis method was used for equally assigning the nodes to several clusters in the network.Both simulation and the verification results showed that the survival number of the proposed algorithm LEACH-ED increased by 66%.Moreover,the network load was high and network lifetime was longer.The mathematical model between the average voltage of nodes(y)and the running time(x)was concluded in the equation y=−0.0643x+4.3694,and the correlation coefficient was R2=0.9977.The research results can provide a foundation and method for the design and simulation of the routing algorithm in agricultural WMSNs.
基金National‘86 3’ High Technolgy Plan!(86 3-317-0 1-0 1-0 1-99)
文摘A fuzzy requirement based strategy for QoS service in broadband networks was presented. With the analysis of QoS service in ATM networks and broadband IP networks, it gave a requirement based strategy for QoS service application with Fuzzy language evaluation principles. The requirement parameters are chosen according to the WANT/COST rule, and a fuzzy set is constructed to realize the fuzzy determinant. The simulation results show that it is useful to evaluate the QoS service in broadband networks, and to effectively simplify the access protocols and solve the billing issues in broadband networks.
文摘One algorithm and one method for PNNI(Private Network to Network Interface) routing were presented. The algorithm is OIL (Older Is Leader) algorithms for Peer Group selection, and the method is the DOO (Distributed object-oriented) method for HDOS (Hierarchy Distributed-Object System), PNNI systems and IP(Internet Protocol) networks. Based on the specifications from ATM forum, and the creative ideas from Distributed System realization, this paper studies and analyzes the private ATM network environment. The OIL algorithm and the DOO method are both for PNNI routing protocol. Through the PNNI simulation, the availability and robustness are proved for the above two improvements.
文摘Considering wireless sensor network characteristics,this paper uses network simulator,version2(NS-2)algorithm to improve Ad hoc on-demand distance vector(AODV)routing algorithm,so that it can be applied to wireless sensor networks.After studying AODV routing protocol,a new algorithm called Must is brought up.This paper introduces the background and algorithm theory of Must,and discusses the details about how to implement Must algorithm.At last,using network simulator(NS-2),the performance of Must is evaluated and compared with that of AODV.Simulation results show that the network using Must algorithm has perfect performance.
文摘The purpose of this paper is to solve the problem of Ad Hoc network routing protocol using a Genetic Algorithm based approach. In particular, the greater reliability and efficiency, in term of duration of communication paths, due to the introduction of Genetic Classifier is demonstrated.
文摘Most of the existing opportunistic network routing protocols are based on some type of utility function that is directly or indirectly dependent on the past behavior of devices. The past behavior or history of a device is usually referred to as contacts that the device had in the past. Whatever may be the metric of history, most of these routing protocols work on the realistic premise that node mobility is not truly random. In contrast, there are several oracles based methods where such oracles assist these methods to gain access to information that is unrealistic in the real world. Although, such oracles are unrealistic, they can help to understand the nature and behavior of underlying networks. In this paper, we have analyzed the gap between these two extremes. We have performed max-flow computations on three different opportunistic networks and then compared the results by performing max-flow computations on history generated by the respective networks. We have found that the correctness of the history based prediction of history is dependent on the dense nature of the underlying network. Moreover, the history based prediction can deliver correct paths but cannot guarantee their absolute reliability.
基金supported by the Ph.D.Programs Foundation of Ministry of Education of China (20060611010)the National Basic Research Program of China (2007CB311005)the National Nature Science Foundation of China (60905066)
文摘Clustering provides an effective way to prolong the lifetime of wireless sensor networks. One of the major issues of a clustering protocol is selecting an optimal group of sensor nodes as the cluster heads to divide the network. Another is the mode of inter-cluster communication. In this paper, an energy-balanced unequal clustering (EBUC) protocol is proposed and evaluated. By using the particle swarm optimization (PSO) algorithm, EBUC partitions all nodes into clusters of unequal size, in which the clusters closer to the base station have smaller size. The cluster heads of these clusters can preserve some more energy for the inter-cluster relay traffic and the 'hot-spots' problem can be avoided. For inter-cluster communication, EBUC adopts an energy-aware multihop routing to reduce the energy consumption of the cluster heads. Simulation results demonstrate that the protocol can efficiently decrease the dead speed of the nodes and prolong the network lifetime.
文摘Grouping nodes gives better performance to the whole network by diminishing the average network delay and avoiding unnecessary message forwarding and additional overhead. Many routing protocols for ad-hoc and sensor networks have been designed but none of them are based on groups. In this paper, we will start defining group-based topologies, and then we will show how some wireless ad hoc sensor networks (WAHSN) routing protocols perform when the nodes are arranged in groups. In our proposal connections between groups are established as a function of the proximity of the nodes and the neighbor's available capacity (based on the node's energy). We describe the architecture proposal, the messages that are needed for the proper operation and its mathematical description. We have also simulated how much time is needed to propagate information between groups. Finally, we will show a comparison with other architectures.
文摘The topology architecture, characteristics and routing technologies ofbroadband satellite net-works are studied in this paper. The authors propose the routing scheme ofsatellite networks and design a time and space-based distributed routing algorithm whose complexityis O (1). Simulation results aiming at satellite mobility show that the new algorithm can determinethe minimum propagation delay paths effectively.