对于行星际深空探测(距地球1亿km以上)任务,由于受到计算机字长的限制,传统双程测速模型的计算精度无法满足高精度定轨的需要,其最大误差源于多普勒频移周计数终点和始点上行几何距离之间和下行几何距离之间差分值的计算过程。对此建立...对于行星际深空探测(距地球1亿km以上)任务,由于受到计算机字长的限制,传统双程测速模型的计算精度无法满足高精度定轨的需要,其最大误差源于多普勒频移周计数终点和始点上行几何距离之间和下行几何距离之间差分值的计算过程。对此建立行星际双程测速模型,高精度地计算了两个差分值,推导模型的计算公式并给出详细步骤,同时给出计算过程中需要的切比雪夫差分多项式递推公式的形式。将该模型在深空探测器精密定轨与重力场解算软件系统(Wuhan University deep-space orbit determination and gravity recovery system,WUDOGS)中进行了实现,并以欧空局火星快车号(Mars express,MEX)探测任务为背景,利用该软件进行仿真测试,从计算精度和定轨结果两个方面验证该模型的优越性。结果表明,该模型将双程测速的计算值在计算机中表达的精度提高2个数量级,同时避免了定轨过程中引入额外的数值误差,可以为后续高精度的行星际深空探测任务的定轨提供参考。展开更多
文摘对于行星际深空探测(距地球1亿km以上)任务,由于受到计算机字长的限制,传统双程测速模型的计算精度无法满足高精度定轨的需要,其最大误差源于多普勒频移周计数终点和始点上行几何距离之间和下行几何距离之间差分值的计算过程。对此建立行星际双程测速模型,高精度地计算了两个差分值,推导模型的计算公式并给出详细步骤,同时给出计算过程中需要的切比雪夫差分多项式递推公式的形式。将该模型在深空探测器精密定轨与重力场解算软件系统(Wuhan University deep-space orbit determination and gravity recovery system,WUDOGS)中进行了实现,并以欧空局火星快车号(Mars express,MEX)探测任务为背景,利用该软件进行仿真测试,从计算精度和定轨结果两个方面验证该模型的优越性。结果表明,该模型将双程测速的计算值在计算机中表达的精度提高2个数量级,同时避免了定轨过程中引入额外的数值误差,可以为后续高精度的行星际深空探测任务的定轨提供参考。