In this paper, a meshfree boundary integral equation (BIE) method, called the moving Kriging interpolation- based boundary node method (MKIBNM), is developed for solving two-dimensional potential problems. This st...In this paper, a meshfree boundary integral equation (BIE) method, called the moving Kriging interpolation- based boundary node method (MKIBNM), is developed for solving two-dimensional potential problems. This study combines the DIE method with the moving Kriging interpolation to present a boundary-type meshfree method, and the corresponding formulae of the MKIBNM are derived. In the present method, the moving Kriging interpolation is applied instead of the traditional moving least-square approximation to overcome Kronecker's delta property, then the boundary conditions can be imposed directly and easily. To verify the accuracy and stability of the present formulation, three selected numerical examples are presented to demonstrate the efficiency of MKIBNM numerically.展开更多
Mathematics and computer sciences need suitable methods for numerical calculations of integrals. Classical methods, based on polynomial interpolation, have many weak sides: they are useless to interpolate the function...Mathematics and computer sciences need suitable methods for numerical calculations of integrals. Classical methods, based on polynomial interpolation, have many weak sides: they are useless to interpolate the function that fails to be differentiable at one point or differs from the shape of polynomials considerably. We cannot forget about the Runge’s phenomenon. To deal with numerical interpolation and integration dedicated methods should be constructed. One of them, called by author the method of Hurwitz-Radon Matrices (MHR), can be used in reconstruction and interpolation of curves in the plane. This novel method is based on a family of Hurwitz-Radon (HR) matrices. The matrices are skew-symmetric and possess columns composed of orthogonal vectors. The operator of Hurwitz-Radon (OHR), built from that matrices, is described. It is shown how to create the orthogonal and discrete OHR and how to use it in a process of function interpolation and numerical integration. Created from the family of N-1 HR matrices and completed with the identical matrix, system of matrices is orthogonal only for vector spaces of dimensions N = 2, 4 or 8. Orthogonality of columns and rows is very significant for stability and high precision of calculations. MHR method is interpolating the curve point by point without using any formula of function. Main features of MHR method are: accuracy of curve reconstruction depending on number of nodes and method of choosing nodes;interpolation of L points of the curve is connected with the computational cost of rank O(L);MHR interpolation is not a linear interpolation.展开更多
In this paper, one class of nonlinear singular integral equation is discussed through Lagrange interpolation method. We research the connections between numerical solutions of the equations and chaos in the process of...In this paper, one class of nonlinear singular integral equation is discussed through Lagrange interpolation method. We research the connections between numerical solutions of the equations and chaos in the process of solving by iterative method.展开更多
The Chebyshev spectral variational integrator(CSVI) is presented in this paper. Spectral methods have aroused great interest in approximating numerically a smooth problem for their attractive geometric convergence rat...The Chebyshev spectral variational integrator(CSVI) is presented in this paper. Spectral methods have aroused great interest in approximating numerically a smooth problem for their attractive geometric convergence rates. The geometric numerical methods are praised for their excellent long-time geometric structure-preserving properties.According to the generalized Galerkin framework, we combine two methods together to construct a variational integrator, which captures the merits of both methods. Since the interpolating points of the variational integrator are chosen as the Chebyshev points,the integration of Lagrangian can be approximated by the Clenshaw-Curtis quadrature rule, and the barycentric Lagrange interpolation is presented to substitute for the classic Lagrange interpolation in the approximation of configuration variables and the corresponding derivatives. The numerical float errors of the first-order spectral differentiation matrix can be alleviated by using a trigonometric identity especially when the number of Chebyshev points is large. Furthermore, the spectral variational integrator(SVI) constructed by the Gauss-Legendre quadrature rule and the multi-interval spectral method are carried out to compare with the CSVI, and the interesting kink phenomena for the Clenshaw-Curtis quadrature rule are discovered. The numerical results reveal that the CSVI has an advantage on the computing time over the whole progress and a higher accuracy than the SVI before the kink position. The effectiveness of the proposed method is demonstrated and verified perfectly through the numerical simulations for several classical mechanics examples and the orbital propagation for the planet systems and the Solar system.展开更多
In this paper, we used an interpolation function with strong trigonometric components to derive a numerical integrator that can be used for solving first order initial value problems in ordinary differential equation....In this paper, we used an interpolation function with strong trigonometric components to derive a numerical integrator that can be used for solving first order initial value problems in ordinary differential equation. This numerical integrator has been tested for desirable qualities like stability, convergence and consistency. The discrete models have been used for a numerical experiment which makes us conclude that the schemes are suitable for the solution of first order ordinary differential equation.展开更多
In this paper two classes of equivalence transform methods for solving ordinary differential equations are proposed. One class of method is the equivalence integral transform method for special differential algebraic ...In this paper two classes of equivalence transform methods for solving ordinary differential equations are proposed. One class of method is the equivalence integral transform method for special differential algebraic problems. The advantage of this class of method is such that the amount of work calculating one integration with parameters becomes that of two interpolations, when the system of nonlinear equations is solved on the right hand side function. The other class of method is the equivalence substitution method for avoiding calculating derivative on the right hand side function. In order to avoid calculation derivatives, two equivalence substitution methods are proposed here. The application instances of some special effect of the equivalence substitution methods are given.展开更多
In this paper, a new two-step Newton-type method with third-order convergence for solving systems of nonlinear equations is proposed. We construct the new method based on the integral interpolation of Newton’s method...In this paper, a new two-step Newton-type method with third-order convergence for solving systems of nonlinear equations is proposed. We construct the new method based on the integral interpolation of Newton’s method. Its cubic convergence and error equation are proved theoretically, and demonstrated numerically. Its application to systems of nonlinear equations and boundary-value problems of nonlinear ODEs are shown as well in the numerical examples.展开更多
In order to overcome the possible singularity associated with the Point Interpolation Method(PIM),the Radial Point Interpolation Method(RPIM)was proposed by G.R.Liu.Radial basis functions(RBF)was used in RPIM as basis...In order to overcome the possible singularity associated with the Point Interpolation Method(PIM),the Radial Point Interpolation Method(RPIM)was proposed by G.R.Liu.Radial basis functions(RBF)was used in RPIM as basis functions for interpolation.All these radial basis functions include shape parameters.The choice of these shape parameters has been and stays a problematic theme in RBF approximation and interpolation theory.The object of this study is to contribute to the analysis of how these shape parameters affect the accuracy of the radial PIM.The RPIM is studied based on the global Galerkin weak form performed using two integration technics:classical Gaussian integration and the strain smoothing integration scheme.The numerical performance of this method is tested on their behavior on curve fitting,and on three elastic mechanical problems with regular or irregular nodes distributions.A range of recommended shape parameters is obtained from the analysis of different error indexes and also the condition number of the matrix system.All resulting RPIM methods perform very well in term of numerical computation.The Smoothed Radial Point Interpolation Method(SRPIM)shows a higher accuracy,especially in a situation of distorted node scheme.展开更多
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.10902076)the Natural Science Foundation of Shanxi Province of China(Grant No.2007011009)+1 种基金the Scientific Research and Development Program of the Shanxi Higher Education Institutions(Grant No.20091131)the Doctoral Startup Foundation of Taiyuan University of Science and Technology(Grant No.200708)
文摘In this paper, a meshfree boundary integral equation (BIE) method, called the moving Kriging interpolation- based boundary node method (MKIBNM), is developed for solving two-dimensional potential problems. This study combines the DIE method with the moving Kriging interpolation to present a boundary-type meshfree method, and the corresponding formulae of the MKIBNM are derived. In the present method, the moving Kriging interpolation is applied instead of the traditional moving least-square approximation to overcome Kronecker's delta property, then the boundary conditions can be imposed directly and easily. To verify the accuracy and stability of the present formulation, three selected numerical examples are presented to demonstrate the efficiency of MKIBNM numerically.
文摘Mathematics and computer sciences need suitable methods for numerical calculations of integrals. Classical methods, based on polynomial interpolation, have many weak sides: they are useless to interpolate the function that fails to be differentiable at one point or differs from the shape of polynomials considerably. We cannot forget about the Runge’s phenomenon. To deal with numerical interpolation and integration dedicated methods should be constructed. One of them, called by author the method of Hurwitz-Radon Matrices (MHR), can be used in reconstruction and interpolation of curves in the plane. This novel method is based on a family of Hurwitz-Radon (HR) matrices. The matrices are skew-symmetric and possess columns composed of orthogonal vectors. The operator of Hurwitz-Radon (OHR), built from that matrices, is described. It is shown how to create the orthogonal and discrete OHR and how to use it in a process of function interpolation and numerical integration. Created from the family of N-1 HR matrices and completed with the identical matrix, system of matrices is orthogonal only for vector spaces of dimensions N = 2, 4 or 8. Orthogonality of columns and rows is very significant for stability and high precision of calculations. MHR method is interpolating the curve point by point without using any formula of function. Main features of MHR method are: accuracy of curve reconstruction depending on number of nodes and method of choosing nodes;interpolation of L points of the curve is connected with the computational cost of rank O(L);MHR interpolation is not a linear interpolation.
文摘In this paper, one class of nonlinear singular integral equation is discussed through Lagrange interpolation method. We research the connections between numerical solutions of the equations and chaos in the process of solving by iterative method.
基金the National Natural Science Foundation of China (Nos. 11472041,11532002,11772049,and 11802320)。
文摘The Chebyshev spectral variational integrator(CSVI) is presented in this paper. Spectral methods have aroused great interest in approximating numerically a smooth problem for their attractive geometric convergence rates. The geometric numerical methods are praised for their excellent long-time geometric structure-preserving properties.According to the generalized Galerkin framework, we combine two methods together to construct a variational integrator, which captures the merits of both methods. Since the interpolating points of the variational integrator are chosen as the Chebyshev points,the integration of Lagrangian can be approximated by the Clenshaw-Curtis quadrature rule, and the barycentric Lagrange interpolation is presented to substitute for the classic Lagrange interpolation in the approximation of configuration variables and the corresponding derivatives. The numerical float errors of the first-order spectral differentiation matrix can be alleviated by using a trigonometric identity especially when the number of Chebyshev points is large. Furthermore, the spectral variational integrator(SVI) constructed by the Gauss-Legendre quadrature rule and the multi-interval spectral method are carried out to compare with the CSVI, and the interesting kink phenomena for the Clenshaw-Curtis quadrature rule are discovered. The numerical results reveal that the CSVI has an advantage on the computing time over the whole progress and a higher accuracy than the SVI before the kink position. The effectiveness of the proposed method is demonstrated and verified perfectly through the numerical simulations for several classical mechanics examples and the orbital propagation for the planet systems and the Solar system.
文摘In this paper, we used an interpolation function with strong trigonometric components to derive a numerical integrator that can be used for solving first order initial value problems in ordinary differential equation. This numerical integrator has been tested for desirable qualities like stability, convergence and consistency. The discrete models have been used for a numerical experiment which makes us conclude that the schemes are suitable for the solution of first order ordinary differential equation.
基金The project was supported by the National Natural Science Faundation of China
文摘In this paper two classes of equivalence transform methods for solving ordinary differential equations are proposed. One class of method is the equivalence integral transform method for special differential algebraic problems. The advantage of this class of method is such that the amount of work calculating one integration with parameters becomes that of two interpolations, when the system of nonlinear equations is solved on the right hand side function. The other class of method is the equivalence substitution method for avoiding calculating derivative on the right hand side function. In order to avoid calculation derivatives, two equivalence substitution methods are proposed here. The application instances of some special effect of the equivalence substitution methods are given.
文摘In this paper, a new two-step Newton-type method with third-order convergence for solving systems of nonlinear equations is proposed. We construct the new method based on the integral interpolation of Newton’s method. Its cubic convergence and error equation are proved theoretically, and demonstrated numerically. Its application to systems of nonlinear equations and boundary-value problems of nonlinear ODEs are shown as well in the numerical examples.
文摘In order to overcome the possible singularity associated with the Point Interpolation Method(PIM),the Radial Point Interpolation Method(RPIM)was proposed by G.R.Liu.Radial basis functions(RBF)was used in RPIM as basis functions for interpolation.All these radial basis functions include shape parameters.The choice of these shape parameters has been and stays a problematic theme in RBF approximation and interpolation theory.The object of this study is to contribute to the analysis of how these shape parameters affect the accuracy of the radial PIM.The RPIM is studied based on the global Galerkin weak form performed using two integration technics:classical Gaussian integration and the strain smoothing integration scheme.The numerical performance of this method is tested on their behavior on curve fitting,and on three elastic mechanical problems with regular or irregular nodes distributions.A range of recommended shape parameters is obtained from the analysis of different error indexes and also the condition number of the matrix system.All resulting RPIM methods perform very well in term of numerical computation.The Smoothed Radial Point Interpolation Method(SRPIM)shows a higher accuracy,especially in a situation of distorted node scheme.