期刊文献+
共找到78篇文章
< 1 2 4 >
每页显示 20 50 100
Robust Damage Detection and Localization Under Complex Environmental Conditions Using Singular Value Decomposition-based Feature Extraction and One-dimensional Convolutional Neural Network
1
作者 Shengkang Zong Sheng Wang +3 位作者 Zhitao Luo Xinkai Wu Hui Zhang Zhonghua Ni 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第3期252-261,共10页
Ultrasonic guided wave is an attractive monitoring technique for large-scale structures but is vulnerable to changes in environmental and operational conditions(EOC),which are inevitable in the normal inspection of ci... Ultrasonic guided wave is an attractive monitoring technique for large-scale structures but is vulnerable to changes in environmental and operational conditions(EOC),which are inevitable in the normal inspection of civil and mechanical structures.This paper thus presents a robust guided wave-based method for damage detection and localization under complex environmental conditions by singular value decomposition-based feature extraction and one-dimensional convolutional neural network(1D-CNN).After singular value decomposition-based feature extraction processing,a temporal robust damage index(TRDI)is extracted,and the effect of EOCs is well removed.Hence,even for the signals with a very large temperature-varying range and low signal-to-noise ratios(SNRs),the final damage detection and localization accuracy retain perfect 100%.Verifications are conducted on two different experimental datasets.The first dataset consists of guided wave signals collected from a thin aluminum plate with artificial noises,and the second is a publicly available experimental dataset of guided wave signals acquired on a composite plate with a temperature ranging from 20℃to 60℃.It is demonstrated that the proposed method can detect and localize the damage accurately and rapidly,showing great potential for application in complex and unknown EOC. 展开更多
关键词 Ultrasonic guided waves Singular value decomposition Damage detection and localization Environmental and operational conditions one-dimensional convolutional neural network
下载PDF
Intelligent geochemical interpretation of mass chromatograms:Based on convolution neural network
2
作者 Kai-Ming Su Jun-Gang Lu +2 位作者 Jian Yu Zi-Xing Lu Shi-Jia Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期752-764,共13页
Gas chromatography-mass spectrometry(GC-MS)is an extremely important analytical technique that is widely used in organic geochemistry.It is the only approach to capture biomarker features of organic matter and provide... Gas chromatography-mass spectrometry(GC-MS)is an extremely important analytical technique that is widely used in organic geochemistry.It is the only approach to capture biomarker features of organic matter and provides the key evidence for oil-source correlation and thermal maturity determination.However,the conventional way of processing and interpreting the mass chromatogram is both timeconsuming and labor-intensive,which increases the research cost and restrains extensive applications of this method.To overcome this limitation,a correlation model is developed based on the convolution neural network(CNN)to link the mass chromatogram and biomarker features of samples from the Triassic Yanchang Formation,Ordos Basin,China.In this way,the mass chromatogram can be automatically interpreted.This research first performs dimensionality reduction for 15 biomarker parameters via the factor analysis and then quantifies the biomarker features using two indexes(i.e.MI and PMI)that represent the organic matter thermal maturity and parent material type,respectively.Subsequently,training,interpretation,and validation are performed multiple times using different CNN models to optimize the model structure and hyper-parameter setting,with the mass chromatogram used as the input and the obtained MI and PMI values for supervision(label).The optimized model presents high accuracy in automatically interpreting the mass chromatogram,with R2values typically above 0.85 and0.80 for the thermal maturity and parent material interpretation results,respectively.The significance of this research is twofold:(i)developing an efficient technique for geochemical research;(ii)more importantly,demonstrating the potential of artificial intelligence in organic geochemistry and providing vital references for future related studies. 展开更多
关键词 Organic geochemistry BIOMARKER Mass chromatographic analysis Automated interpretation convolution neural network Machine learning
下载PDF
Remaining Useful Life Prediction of Aeroengine Based on Principal Component Analysis and One-Dimensional Convolutional Neural Network 被引量:3
3
作者 LYU Defeng HU Yuwen 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期867-875,共9页
In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based... In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness. 展开更多
关键词 AEROENGINE remaining useful life(RUL) principal component analysis(PCA) one-dimensional convolution neural network(1D-CNN) time series prediction state parameters
下载PDF
Automatic well test interpretation based on convolutional neural network for a radial composite reservoir 被引量:3
4
作者 LI Daolun LIU Xuliang +2 位作者 ZHA Wenshu YANG Jinghai LU Detang 《Petroleum Exploration and Development》 2020年第3期623-631,共9页
An automatic well test interpretation method for radial composite reservoirs based on convolutional neural network(CNN) is proposed, and its effectiveness and accuracy are verified by actual field data. In this paper,... An automatic well test interpretation method for radial composite reservoirs based on convolutional neural network(CNN) is proposed, and its effectiveness and accuracy are verified by actual field data. In this paper, based on the data transformed by logarithm function and the loss function of mean square error(MSE), the optimal CNN is obtained by reducing the loss function to optimize the network with "dropout" method to avoid over fitting. The trained optimal network can be directly used to interpret the buildup or drawdown pressure data of the well in the radial composite reservoir, that is, the log-log plot of the given measured pressure variation and its derivative data are input into the network, the outputs are corresponding reservoir parameters(mobility ratio, storativity ratio, dimensionless composite radius, and dimensionless group characterizing well storage and skin effects), which realizes the automatic initial fitting of well test interpretation parameters. The method is verified with field measured data of Daqing Oilfield. The research shows that the method has high interpretation accuracy, and it is superior to the analytical method and the least square method. 展开更多
关键词 radial composite reservoir well testing interpretation convolutional neural network automatic interpretation artificial intelligence
下载PDF
Fault Line Detection Using Waveform Fusion and One-dimensional Convolutional Neural Network in Resonant Grounding Distribution Systems 被引量:6
5
作者 Jianhong Gao Moufa Guo Duan-Yu Chen 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第2期250-260,共11页
Effective features are essential for fault diagnosis.Due to the faint characteristics of a single line-to-ground(SLG)fault,fault line detection has become a challenge in resonant grounding distribution systems.This pa... Effective features are essential for fault diagnosis.Due to the faint characteristics of a single line-to-ground(SLG)fault,fault line detection has become a challenge in resonant grounding distribution systems.This paper proposes a novel fault line detection method using waveform fusion and one-dimensional convolutional neural networks(1-D CNN).After an SLG fault occurs,the first-half waves of zero-sequence currents are collected and superimposed with each other to achieve waveform fusion.The compelling feature of fused waveforms is extracted by 1-D CNN to determine whether the fused waveform source contains the fault line.Then,the 1-D CNN output is used to update the value of the counter in order to identify the fault line.Given the lack of fault data in existing distribution systems,the proposed method only needs a small quantity of data for model training and fault line detection.In addition,the proposed method owns fault-tolerant performance.Even if a few samples are misjudged,the fault line can still be detected correctly based on the full output results of 1-D CNN.Experimental results verified that the proposed method can work effectively under various fault conditions. 展开更多
关键词 Fault line detection one-dimensional convolutional neural network resonant grounding distribution systems waveform fusion
原文传递
Interpretable deep learning for roof fall hazard detection in underground mines 被引量:5
6
作者 Ergin Isleyen Sebnem Duzgun R.McKell Carter 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1246-1255,共10页
Roof falls due to geological conditions are major hazards in the mining industry,causing work time loss,injuries,and fatalities.There are roof fall problems caused by high horizontal stress in several largeopening lim... Roof falls due to geological conditions are major hazards in the mining industry,causing work time loss,injuries,and fatalities.There are roof fall problems caused by high horizontal stress in several largeopening limestone mines in the eastern and midwestern United States.The typical hazard management approach for this type of roof fall hazards relies heavily on visual inspections and expert knowledge.In this context,we proposed a deep learning system for detection of the roof fall hazards caused by high horizontal stress.We used images depicting hazardous and non-hazardous roof conditions to develop a convolutional neural network(CNN)for autonomous detection of hazardous roof conditions.To compensate for limited input data,we utilized a transfer learning approach.In the transfer learning approach,an already-trained network is used as a starting point for classification in a similar domain.Results show that this approach works well for classifying roof conditions as hazardous or safe,achieving a statistical accuracy of 86.4%.This result is also compared with a random forest classifier,and the deep learning approach is more successful at classification of roof conditions.However,accuracy alone is not enough to ensure a reliable hazard management system.System constraints and reliability are improved when the features used by the network are understood.Therefore,we used a deep learning interpretation technique called integrated gradients to identify the important geological features in each image for prediction.The analysis of integrated gradients shows that the system uses the same roof features as the experts do on roof fall hazards detection.The system developed in this paper demonstrates the potential of deep learning in geotechnical hazard management to complement human experts,and likely to become an essential part of autonomous operations in cases where hazard identification heavily depends on expert knowledge.Moreover,deep learning-based systems reduce expert exposure to hazardous conditions. 展开更多
关键词 Roof fall convolutional neural network(CNN) Transfer learning Deep learning interpretation Integrated gradients
下载PDF
基于时空图注意力网络的超短期区域负荷预测 被引量:2
7
作者 赵紫昱 陈渊睿 +2 位作者 陈霆威 刘俊峰 曾君 《电力系统自动化》 EI CSCD 北大核心 2024年第12期147-155,共9页
目前,空间负荷预测研究对复杂时空关系的考虑不足。为此,文中提出一种基于多维、多源特征的区域级负荷超短期时空预测模型。首先,根据已有的区域级负荷进行元胞划分,构建考虑元胞相关性的图拓扑。其次,分别通过图注意力网络、一维卷积... 目前,空间负荷预测研究对复杂时空关系的考虑不足。为此,文中提出一种基于多维、多源特征的区域级负荷超短期时空预测模型。首先,根据已有的区域级负荷进行元胞划分,构建考虑元胞相关性的图拓扑。其次,分别通过图注意力网络、一维卷积神经网络和门控循环单元,从空间、特征和时间维度提取有效特征,连接全连接层输出结果。最后,基于美国新英格兰地区的真实电力负荷数据进行仿真验证,并提取模型注意力权重,分析元胞之间的空间依赖性。结果表明,所提模型相比传统模型在不同预测步长上均具有更高的预测精度和稳定性,有效挖掘了区域级负荷的空间依赖性。 展开更多
关键词 负荷预测 负荷空间分布 卷积神经网络 门控循环单元 注意力机制 可解释性
下载PDF
基于内嵌物理知识卷积神经网络的电力系统暂态稳定评估 被引量:1
8
作者 陆旭 张理寅 +2 位作者 李更丰 别朝红 段超 《电力系统自动化》 EI CSCD 北大核心 2024年第9期107-119,共13页
针对现有数据驱动的电力系统暂态评估方法依赖大规模数据集且可解释性不足的问题,文中将物理知识嵌入传统数据驱动方法,提出一种基于内嵌物理知识卷积神经网络的电力系统暂态稳定评估方法。该方法考虑大规模风电并网的电力系统,将电力... 针对现有数据驱动的电力系统暂态评估方法依赖大规模数据集且可解释性不足的问题,文中将物理知识嵌入传统数据驱动方法,提出一种基于内嵌物理知识卷积神经网络的电力系统暂态稳定评估方法。该方法考虑大规模风电并网的电力系统,将电力系统暂态稳定物理方程内嵌至神经网络损失函数,通过神经网络直接逼近物理过程,使输出结果满足物理规律,提高暂态稳定评估的可靠性与可解释性。通过数据与知识双驱动,所提方法不依赖大规模训练数据集,依然具有较好的鲁棒性与泛化能力。此外,所提方法通过卷积神经网络进行特征提取与降维,解决拓扑数据无法直接作为神经网络输入的难题。在含风机的IEEE 9节点和IEEE 39节点测试系统上的实验结果表明,所提方法在准确率、计算效率、泛化能力等方面相较现有方法有显著提升。 展开更多
关键词 内嵌物理知识卷积神经网络 知识-数据混合驱动 功角 暂态稳定性 机器学习 可解释性
下载PDF
基于卷积神经网络的光学遥感影像道路提取方法研究进展 被引量:1
9
作者 林雨准 刘智 +2 位作者 王淑香 芮杰 金飞 《吉林大学学报(地球科学版)》 CAS CSCD 北大核心 2024年第3期1068-1080,共13页
随着光学遥感影像空间分辨率的提升和获取渠道的丰富,利用光学遥感影像实现地物智能解译已成为高效的技术路径。由于卷积神经网络(convolutional neural networks,CNN)强大的特征提取能力以及道路信息在多个领域的应用需求,基于CNN的道... 随着光学遥感影像空间分辨率的提升和获取渠道的丰富,利用光学遥感影像实现地物智能解译已成为高效的技术路径。由于卷积神经网络(convolutional neural networks,CNN)强大的特征提取能力以及道路信息在多个领域的应用需求,基于CNN的道路提取方法成为了当前的研究热点。鉴于此,本文根据近年来的相关研究文献,对基于CNN的道路提取方法从基于形状特征的改进、基于连通性的改进、基于多尺度特征的改进和基于提取策略的改进四个方面进行归纳总结,然后描述典型道路遮挡案例,并利用经典CNN从样本标签的局限性层面对当前的技术难点进行分析与验证,最后从多源数据协同、样本库建设、弱监督模型和域适应学习四个方面对遥感影像道路提取的发展趋势进行评估和展望。 展开更多
关键词 卷积神经网络 光学 遥感影像 道路提取 智能解译
下载PDF
卷积神经网络在结直肠息肉辅助诊断中的应用综述 被引量:1
10
作者 考文涛 李明 马金刚 《计算机科学与探索》 CSCD 北大核心 2024年第3期627-645,共19页
结直肠癌是一种恶性肿瘤,主要发生在结肠和直肠的组织中,其早期发现和治疗具有重要意义。结直肠癌的早期检测和预防主要是对病人的肠道进行视觉检查,从而筛查结直肠息肉,但人工检查存在漏诊率高等弊端。基于卷积神经网络(CNN)的辅助诊... 结直肠癌是一种恶性肿瘤,主要发生在结肠和直肠的组织中,其早期发现和治疗具有重要意义。结直肠癌的早期检测和预防主要是对病人的肠道进行视觉检查,从而筛查结直肠息肉,但人工检查存在漏诊率高等弊端。基于卷积神经网络(CNN)的辅助诊断系统在结直肠息肉的诊断方面表现出最先进的性能,是目前计算机辅助诊断领域的研究热点。根据近几年发表的相关重要文献,对卷积神经网络在结直肠息肉辅助诊断中的应用进行系统综述。首先介绍了结直肠息肉诊断领域的常用数据集,其中包括图片和视频数据集;其次分别对CNN在结直肠息肉检测、分割以及分类中的应用进行系统阐述,对各算法的主要改进思路、优缺点以及性能进行深入分析,旨在为研究人员提供更系统的参考,并对深度学习模型的可解释性进行总结;最后对基于CNN的结直肠息肉辅助诊断的各类算法进行总结,并对未来的研究方向进行展望。 展开更多
关键词 结直肠息肉 卷积神经网络(CNN) 计算机辅助诊断 可解释性
下载PDF
基于暂态时-频特征差异的配电网高阻接地故障识别方法 被引量:1
11
作者 史鸿飞 邓丰 +4 位作者 钟航 钟逸涵 蒋素霞 李鑫瑜 陈依林 《中国电机工程学报》 EI CSCD 北大核心 2024年第16期6455-6469,I0014,共16页
高阻接地故障发生时,故障特征微弱,传统故障识别方法存在特征提取困难、阈值选取灵活性较差的技术瓶颈,导致极端故障场景下出现漏判。为此,提出基于暂态时-频特征差异的配电网高阻接地故障识别方法。首先,结合小波包香农熵量化分析高阻... 高阻接地故障发生时,故障特征微弱,传统故障识别方法存在特征提取困难、阈值选取灵活性较差的技术瓶颈,导致极端故障场景下出现漏判。为此,提出基于暂态时-频特征差异的配电网高阻接地故障识别方法。首先,结合小波包香农熵量化分析高阻接地故障与正常扰动工况暂态信号的时频分布,发现二者存在显著差异:频域上,扰动工况信号的能量集中于低频,而高阻故障信号能量分布相对均匀;时域上,扰动工况信号能量集中于时间窗的前半段,高阻故障信号能量在整个时间窗内均匀分布。在此基础上,以暂态信号时-频域波形作为输入样本,将传统卷积神经网络(convolutional neural networks,CNN)模型中的softmax分类器改进为支持向量机(support vector machine,SVM)分类器,构建适应配电网高阻接地故障识别小样本场景下的CNN-SVM复合分类模型,以卷积层作为特征提取器,以SVM作为分类器,实现高阻接地故障识别。最后,为论证所提方法具有强适应性的内在原因,利用LIME可解释性分析算法可视化展现模型训练过程中的高关注度区域,从模型分类原理层面证明所提方法不受各种故障条件的影响,克服了传统故障识别方法在极端故障场景下出现漏判的缺陷,能准确识别配电线路末端10 kΩ高阻接地故障。 展开更多
关键词 配电网 高阻接地故障 时-频特征 传统卷积神经网络-支持向量机 LIME可解释性分析
下载PDF
卷积神经网络的半监督层位追踪方法
12
作者 李沐阳 高建虎 +1 位作者 雍学善 常德宽 《石油地球物理勘探》 EI CSCD 北大核心 2024年第5期938-947,共10页
层位追踪是地震资料解释的关键步骤,通常由解释人员以人机交互方式进行,效率较低。卷积神经网络可以构建地震数据和训练标签的非线性映射关系从而完成层位追踪,由于人工解释结果获取困难,仅由少量标签训练的模型泛化能力较差。为此,提... 层位追踪是地震资料解释的关键步骤,通常由解释人员以人机交互方式进行,效率较低。卷积神经网络可以构建地震数据和训练标签的非线性映射关系从而完成层位追踪,由于人工解释结果获取困难,仅由少量标签训练的模型泛化能力较差。为此,提出一种基于卷积神经网络的半监督层位追踪方法,将层位追踪转化为层位断层间区域的图像分割。首先使用自编码器对无标签数据进行训练,之后将部分参数迁移至有监督学习网络后使用少量标签数据进行有监督学习,最后对整个工区的地震数据进行预测,提取分割结果边缘作为层位追踪结果。合成数据和实际数据的测试结果均表明,相较于有监督学习层位追踪方法,该方法具有较少的错误分割,由分割边界提取的层位与人工层位解释结果的误差较小,具有更好的泛化能力。 展开更多
关键词 层位追踪 地震资料解释 卷积神经网络 半监督学习 图像分割
下载PDF
基于致密砂岩气储层施工曲线图的压裂效果评价方法研究
13
作者 刘子雄 张静 +3 位作者 周子惠 郭布民 李新发 陈玲 《中国石油勘探》 CAS CSCD 北大核心 2024年第1期177-182,共6页
压裂施工曲线中隐含了人工裂缝和储层信息,是压裂效果评价的基础,目前主要采用理论及统计的方法进行评价,对压裂工艺的改进和优化指导作用有限。为了充分挖掘施工曲线中隐含的信息,对压裂施工曲线的图像按照压裂无阻流量分类构建样本库... 压裂施工曲线中隐含了人工裂缝和储层信息,是压裂效果评价的基础,目前主要采用理论及统计的方法进行评价,对压裂工艺的改进和优化指导作用有限。为了充分挖掘施工曲线中隐含的信息,对压裂施工曲线的图像按照压裂无阻流量分类构建样本库,采用人工智能中的卷积神经网络(CNN)进行训练,建立基于产能分类的施工曲线效果评价模型,然后应用Grad-CAM进行可解释性研究,找出人工智能进行识别的主要参考位置,进而指导压裂工艺优化和改进。研究表明:采用CNN进行压裂曲线分类准确率能够达到85%以上,影响压裂效果的关键在压裂施工的初期和后期两个阶段,主要包括压裂初期的排量及对应的压力上升速度、停泵压力、段塞持续时间等,可以通过改变施工参数提高压裂产能。因此采用该方法能针对性地进行压裂施工优化和改进。 展开更多
关键词 压裂施工曲线 人工智能 卷积神经网络 图像分类 可解释性
下载PDF
一种基于一维卷积神经网络的试井模型智能识别方法
14
作者 齐占奎 张新鹏 +2 位作者 刘旭亮 查文舒 李道伦 《油气井测试》 2024年第2期72-78,共7页
为提高试井分析工作效率,实现试井模型的自动识别,提出了基于一维卷积神经网络(1D CNN)的试井模型智能识别方法。根据实测数据的特点,提出基于理论曲线构建样本库的原则与方法,并构建了4种常用油藏模型的训练样本库;建立了一维卷积神经... 为提高试井分析工作效率,实现试井模型的自动识别,提出了基于一维卷积神经网络(1D CNN)的试井模型智能识别方法。根据实测数据的特点,提出基于理论曲线构建样本库的原则与方法,并构建了4种常用油藏模型的训练样本库;建立了一维卷积神经网络模型,将样本库中双对数曲线的压力变化和压力导数数据作为输入,油藏类别作为网络输出训练及优化网络,总识别准确率可达99.16%,敏感度均在98%以上。经4口井实例应用,正确识别试井模型的概率大于0.99,与二维卷积神经网络相比,1D CNN显著降低了计算复杂度和时间成本,加快了训练速度。这表明基于试井理论所构建的样本库是有效的,能满足实测数据模型识别的需求;同时证明了方法的有效性、实用性和普适性。 展开更多
关键词 试井模型 一维卷积神经网络 智能识别 深度学习 自动解释 模型识别 样本库
下载PDF
基于Swin Transformer-CNN的单目遥感影像高程估计方法及其在公路建设场景中的应用
15
作者 廖钊宏 张依晨 +3 位作者 杨飚 林明春 孙文博 高智 《测绘学报》 EI CSCD 北大核心 2024年第2期344-352,共9页
目前,在遥感影像几何条件和辐射质量良好的情况下,通过多视遥感影像的逐像素立体密集匹配对场景进行高程估计的技术相对比较成熟,无论是精度还是效率均达到了较高水平。然而,当具有良好几何条件和辐射质量的多视遥感影像难以获取时,经... 目前,在遥感影像几何条件和辐射质量良好的情况下,通过多视遥感影像的逐像素立体密集匹配对场景进行高程估计的技术相对比较成熟,无论是精度还是效率均达到了较高水平。然而,当具有良好几何条件和辐射质量的多视遥感影像难以获取时,经典摄影测量和计算机视觉的几何处理方法可能会面临较大的挑战。本文对该问题进行了研究,针对大幅遥感图像中各部分高程分布差异大,模型训练难度大的问题,提出了一种基于Swin Transformer和卷积神经网络(convolutional neural network, CNN)的单目遥感影像高程估计方法。一方面Swin Transformer利用滑动窗口和层级设计,兼具了卷积神经网络处理大尺寸图像和提取多尺度特征的能力及Transformer的全局信息交互能力。另一方面针对大幅遥感图像中各部分高程分布差异大带来的训练不稳定问题,本文方法能针对每张输入图像自适应地划分高程值,将高程估计问题转化为分类-回归问题,最终图像各像素点的高程值由划分的高程值及其分布概率得到。试验结果表明:本文所提出的基于Swin Transformer-CNN的遥感影像高程估计方法无论是定性还是定量的结果都取得了很好的效果,且能应用于公路建设施工场景中,具有良好的泛化性。 展开更多
关键词 遥感影像智能解译 深度学习 单目高程预测 全局信息 卷积神经网络
下载PDF
基于CNN的阿尔茨海默病与行为异常型额颞叶痴呆的分类
16
作者 俞元琳 杨剑 +1 位作者 王志江 王华丽 《计算机应用与软件》 北大核心 2024年第2期195-201,共7页
提出一种基于改进的一维卷积神经网络(1D-ICNN)的阿尔茨海默病与异常型额颞叶痴呆诊断模型,对卷积层的输出进行下采样的最大池化操作和特征压缩的全局平均池化操作。该模型在47例阿尔茨海默病和39例行为异常型额颞叶痴呆患者脑结构磁共... 提出一种基于改进的一维卷积神经网络(1D-ICNN)的阿尔茨海默病与异常型额颞叶痴呆诊断模型,对卷积层的输出进行下采样的最大池化操作和特征压缩的全局平均池化操作。该模型在47例阿尔茨海默病和39例行为异常型额颞叶痴呆患者脑结构磁共振数据上的分类精度为86.63%,优于传统机器学习模型和一般深度学习模型。此外,采用SHAP可解释方法对模型的预测结果进行解释,并对解释结果进行可视化。 展开更多
关键词 卷积神经网络 疾病分类 模型可解释性
下载PDF
基于图卷积的离子液体CO_(2)溶解度可解释性预测
17
作者 张茜茜 陈平 《计算机技术与发展》 2024年第2期134-141,共8页
为构建离子液体的CO_(2)溶解度的准确预测模型,考虑到传统模型存在的描述符计算复杂、成本高、关联结构与性质困难、结构特征提取不充分等问题,提出一种融合了加入注意力机制的图卷积神经网络和XGBoost的预测模型(APGCN-XGBoost)。对9 ... 为构建离子液体的CO_(2)溶解度的准确预测模型,考虑到传统模型存在的描述符计算复杂、成本高、关联结构与性质困难、结构特征提取不充分等问题,提出一种融合了加入注意力机制的图卷积神经网络和XGBoost的预测模型(APGCN-XGBoost)。对9 897组离子液体的CO_(2)溶解度数据的分析结果显示,所提出的APGCN-XGBoost模型在预测性能上优于传统的分子指纹模型和图卷积神经网络模型。此外,通过注意力池化层与SHAP方法对模型进行解释,APGCN-XGBoost模型学习到了离子液体中各个原子和结构的特征信息与分子非局部信息,这些特征信息不仅可以用于性质预测,还可以用于探索化学结构与性质之间的联系,即通过模型的解释,筛选出对于溶解度预测重要的离子液体结构信息,从而实现CO_(2)捕获过程中理想离子液体的计算机辅助设计和筛选。 展开更多
关键词 图卷积神经网络 离子液体 性质预测 溶解度 可解释性
下载PDF
Effects of various information scenarios on layer-wise relevance propagation-based interpretable convolutional neural networks for air handling unit fault diagnosis
18
作者 Chenglong Xiong Guannan Li +3 位作者 Ying Yan Hanyuan Zhang Chengliang Xu Liang Chen 《Building Simulation》 SCIE EI 2024年第10期1709-1730,共22页
Deep learning(DL),especially convolutional neural networks(CNNs),has been widely applied in air handling unit(AHU)fault diagnosis(FD).However,its application faces two major challenges.Firstly,the accessibility of ope... Deep learning(DL),especially convolutional neural networks(CNNs),has been widely applied in air handling unit(AHU)fault diagnosis(FD).However,its application faces two major challenges.Firstly,the accessibility of operational state variables for AHU systems is limited in practical,and the effectiveness and applicability of existing DL methods for diagnosis require further validation.Secondly,the interpretability performance of DL models under various information scenarios needs further exploration.To address these challenges,this study utilized publicly available ASHRAE RP-1312 AHU fault data and employed CNNs to construct three FD models under three various information scenarios.Furthermore,the layer-wise relevance propagation(LRP)method was used to interpret and explain the effects of these three various information scenarios on the CNN models.An R-threshold was proposed to systematically differentiate diagnostic criteria,which further elucidates the intrinsic reasons behind correct and incorrect decisions made by the models.The results showed that the CNN-based diagnostic models demonstrated good applicability under the three various information scenarios,with an average diagnostic accuracy of 98.55%.The LRP method provided good interpretation and explanation for understanding the decision mechanism of CNN models for the unlimited information scenarios.For the very limited information scenario,since the variables are restricted,although LRP can reveal key variables in the model’s decision-making process,these key variables have certain limitations in terms of data and physical explanations for further improving the model’s interpretation.Finally,an in-depth analysis of model parameters—such as the number of convolutional layers,learning rate,βparameters,and training set size—was conducted to examine their impact on the interpretative results.This study contributes to clarifying the effects of various information scenarios on the diagnostic performance and interpretability of LRP-based CNN models for AHU FD,which helps provide improved reliability of DL models in practical applications. 展开更多
关键词 air handling unit(AHU) fault diagnosis convolutional neural network(CNN) layer-wise relevance propagation(LRP) interpretation and explanation various information scenarios
原文传递
基于语用交互的跨目标立场检测
19
作者 任科兰 张明书 +2 位作者 魏彬 姜文 闫法成 《计算机工程与设计》 北大核心 2024年第8期2513-2519,共7页
针对缺乏足够的带标注意见数据、跨目标立场检测结果不佳且可解释性弱等问题,提出一种基于语用交互(pragmatic interaction graph convolution, PIGCN)的跨目标立场检测模型。考虑情感与立场在语义上的耦合关系,利用交互式图卷积神经网... 针对缺乏足够的带标注意见数据、跨目标立场检测结果不佳且可解释性弱等问题,提出一种基于语用交互(pragmatic interaction graph convolution, PIGCN)的跨目标立场检测模型。考虑情感与立场在语义上的耦合关系,利用交互式图卷积神经网络(graphical convolutional network, GCN),增量式聚合单词在不同目标之间语用信息的相互作用,缓解目标间的信息孤岛问题。实验结果表明,该模型在平均F1值上达到了53.4%,优于基准模型,具有更好的可扩展性和适应性,在提升模型可解释性方面具有潜力。 展开更多
关键词 跨目标立场检测 图卷积神经网络 语用交互 词级粒度 情感词汇 可解释性 依存图
下载PDF
卷积神经网络在机械故障诊断中的应用综述
20
作者 胡海彬 刘仁鑫 +2 位作者 刘日龙 朱威 胡惠玥 《机械工程与自动化》 2024年第4期221-223,共3页
卷积神经网络(Convolutional Neural Network,CNN)因在图像识别与分类方面的优越性,近年来在机械故障诊断领域得到广泛应用。由于CNN提取故障特征的优越性,极大促进了机械故障诊断技术的发展,但目前样本数据的不平衡、噪声干扰以及模型... 卷积神经网络(Convolutional Neural Network,CNN)因在图像识别与分类方面的优越性,近年来在机械故障诊断领域得到广泛应用。由于CNN提取故障特征的优越性,极大促进了机械故障诊断技术的发展,但目前样本数据的不平衡、噪声干扰以及模型不可解释等问题,极大阻碍了CNN技术在故障诊断领域的发展。为进一步提升模型的性能,依据近年来基于CNN机械故障诊断模型的研究进展,对机械故障诊断CNN模型框架进行了分类归纳,然后讨论分析了解决样本不平衡和可解释性问题的进展,最后对CNN在机械故障诊断领域的发展方向进行了展望。 展开更多
关键词 卷积神经网络 机械故障诊断 样本不平衡 可解释性
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部