Ultrasonic guided wave is an attractive monitoring technique for large-scale structures but is vulnerable to changes in environmental and operational conditions(EOC),which are inevitable in the normal inspection of ci...Ultrasonic guided wave is an attractive monitoring technique for large-scale structures but is vulnerable to changes in environmental and operational conditions(EOC),which are inevitable in the normal inspection of civil and mechanical structures.This paper thus presents a robust guided wave-based method for damage detection and localization under complex environmental conditions by singular value decomposition-based feature extraction and one-dimensional convolutional neural network(1D-CNN).After singular value decomposition-based feature extraction processing,a temporal robust damage index(TRDI)is extracted,and the effect of EOCs is well removed.Hence,even for the signals with a very large temperature-varying range and low signal-to-noise ratios(SNRs),the final damage detection and localization accuracy retain perfect 100%.Verifications are conducted on two different experimental datasets.The first dataset consists of guided wave signals collected from a thin aluminum plate with artificial noises,and the second is a publicly available experimental dataset of guided wave signals acquired on a composite plate with a temperature ranging from 20℃to 60℃.It is demonstrated that the proposed method can detect and localize the damage accurately and rapidly,showing great potential for application in complex and unknown EOC.展开更多
Gas chromatography-mass spectrometry(GC-MS)is an extremely important analytical technique that is widely used in organic geochemistry.It is the only approach to capture biomarker features of organic matter and provide...Gas chromatography-mass spectrometry(GC-MS)is an extremely important analytical technique that is widely used in organic geochemistry.It is the only approach to capture biomarker features of organic matter and provides the key evidence for oil-source correlation and thermal maturity determination.However,the conventional way of processing and interpreting the mass chromatogram is both timeconsuming and labor-intensive,which increases the research cost and restrains extensive applications of this method.To overcome this limitation,a correlation model is developed based on the convolution neural network(CNN)to link the mass chromatogram and biomarker features of samples from the Triassic Yanchang Formation,Ordos Basin,China.In this way,the mass chromatogram can be automatically interpreted.This research first performs dimensionality reduction for 15 biomarker parameters via the factor analysis and then quantifies the biomarker features using two indexes(i.e.MI and PMI)that represent the organic matter thermal maturity and parent material type,respectively.Subsequently,training,interpretation,and validation are performed multiple times using different CNN models to optimize the model structure and hyper-parameter setting,with the mass chromatogram used as the input and the obtained MI and PMI values for supervision(label).The optimized model presents high accuracy in automatically interpreting the mass chromatogram,with R2values typically above 0.85 and0.80 for the thermal maturity and parent material interpretation results,respectively.The significance of this research is twofold:(i)developing an efficient technique for geochemical research;(ii)more importantly,demonstrating the potential of artificial intelligence in organic geochemistry and providing vital references for future related studies.展开更多
In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based...In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness.展开更多
An automatic well test interpretation method for radial composite reservoirs based on convolutional neural network(CNN) is proposed, and its effectiveness and accuracy are verified by actual field data. In this paper,...An automatic well test interpretation method for radial composite reservoirs based on convolutional neural network(CNN) is proposed, and its effectiveness and accuracy are verified by actual field data. In this paper, based on the data transformed by logarithm function and the loss function of mean square error(MSE), the optimal CNN is obtained by reducing the loss function to optimize the network with "dropout" method to avoid over fitting. The trained optimal network can be directly used to interpret the buildup or drawdown pressure data of the well in the radial composite reservoir, that is, the log-log plot of the given measured pressure variation and its derivative data are input into the network, the outputs are corresponding reservoir parameters(mobility ratio, storativity ratio, dimensionless composite radius, and dimensionless group characterizing well storage and skin effects), which realizes the automatic initial fitting of well test interpretation parameters. The method is verified with field measured data of Daqing Oilfield. The research shows that the method has high interpretation accuracy, and it is superior to the analytical method and the least square method.展开更多
Effective features are essential for fault diagnosis.Due to the faint characteristics of a single line-to-ground(SLG)fault,fault line detection has become a challenge in resonant grounding distribution systems.This pa...Effective features are essential for fault diagnosis.Due to the faint characteristics of a single line-to-ground(SLG)fault,fault line detection has become a challenge in resonant grounding distribution systems.This paper proposes a novel fault line detection method using waveform fusion and one-dimensional convolutional neural networks(1-D CNN).After an SLG fault occurs,the first-half waves of zero-sequence currents are collected and superimposed with each other to achieve waveform fusion.The compelling feature of fused waveforms is extracted by 1-D CNN to determine whether the fused waveform source contains the fault line.Then,the 1-D CNN output is used to update the value of the counter in order to identify the fault line.Given the lack of fault data in existing distribution systems,the proposed method only needs a small quantity of data for model training and fault line detection.In addition,the proposed method owns fault-tolerant performance.Even if a few samples are misjudged,the fault line can still be detected correctly based on the full output results of 1-D CNN.Experimental results verified that the proposed method can work effectively under various fault conditions.展开更多
Roof falls due to geological conditions are major hazards in the mining industry,causing work time loss,injuries,and fatalities.There are roof fall problems caused by high horizontal stress in several largeopening lim...Roof falls due to geological conditions are major hazards in the mining industry,causing work time loss,injuries,and fatalities.There are roof fall problems caused by high horizontal stress in several largeopening limestone mines in the eastern and midwestern United States.The typical hazard management approach for this type of roof fall hazards relies heavily on visual inspections and expert knowledge.In this context,we proposed a deep learning system for detection of the roof fall hazards caused by high horizontal stress.We used images depicting hazardous and non-hazardous roof conditions to develop a convolutional neural network(CNN)for autonomous detection of hazardous roof conditions.To compensate for limited input data,we utilized a transfer learning approach.In the transfer learning approach,an already-trained network is used as a starting point for classification in a similar domain.Results show that this approach works well for classifying roof conditions as hazardous or safe,achieving a statistical accuracy of 86.4%.This result is also compared with a random forest classifier,and the deep learning approach is more successful at classification of roof conditions.However,accuracy alone is not enough to ensure a reliable hazard management system.System constraints and reliability are improved when the features used by the network are understood.Therefore,we used a deep learning interpretation technique called integrated gradients to identify the important geological features in each image for prediction.The analysis of integrated gradients shows that the system uses the same roof features as the experts do on roof fall hazards detection.The system developed in this paper demonstrates the potential of deep learning in geotechnical hazard management to complement human experts,and likely to become an essential part of autonomous operations in cases where hazard identification heavily depends on expert knowledge.Moreover,deep learning-based systems reduce expert exposure to hazardous conditions.展开更多
Deep learning(DL),especially convolutional neural networks(CNNs),has been widely applied in air handling unit(AHU)fault diagnosis(FD).However,its application faces two major challenges.Firstly,the accessibility of ope...Deep learning(DL),especially convolutional neural networks(CNNs),has been widely applied in air handling unit(AHU)fault diagnosis(FD).However,its application faces two major challenges.Firstly,the accessibility of operational state variables for AHU systems is limited in practical,and the effectiveness and applicability of existing DL methods for diagnosis require further validation.Secondly,the interpretability performance of DL models under various information scenarios needs further exploration.To address these challenges,this study utilized publicly available ASHRAE RP-1312 AHU fault data and employed CNNs to construct three FD models under three various information scenarios.Furthermore,the layer-wise relevance propagation(LRP)method was used to interpret and explain the effects of these three various information scenarios on the CNN models.An R-threshold was proposed to systematically differentiate diagnostic criteria,which further elucidates the intrinsic reasons behind correct and incorrect decisions made by the models.The results showed that the CNN-based diagnostic models demonstrated good applicability under the three various information scenarios,with an average diagnostic accuracy of 98.55%.The LRP method provided good interpretation and explanation for understanding the decision mechanism of CNN models for the unlimited information scenarios.For the very limited information scenario,since the variables are restricted,although LRP can reveal key variables in the model’s decision-making process,these key variables have certain limitations in terms of data and physical explanations for further improving the model’s interpretation.Finally,an in-depth analysis of model parameters—such as the number of convolutional layers,learning rate,βparameters,and training set size—was conducted to examine their impact on the interpretative results.This study contributes to clarifying the effects of various information scenarios on the diagnostic performance and interpretability of LRP-based CNN models for AHU FD,which helps provide improved reliability of DL models in practical applications.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.52272433 and 11874110)Jiangsu Provincial Key R&D Program(Grant No.BE2021084)Technical Support Special Project of State Administration for Market Regulation(Grant No.2022YJ11).
文摘Ultrasonic guided wave is an attractive monitoring technique for large-scale structures but is vulnerable to changes in environmental and operational conditions(EOC),which are inevitable in the normal inspection of civil and mechanical structures.This paper thus presents a robust guided wave-based method for damage detection and localization under complex environmental conditions by singular value decomposition-based feature extraction and one-dimensional convolutional neural network(1D-CNN).After singular value decomposition-based feature extraction processing,a temporal robust damage index(TRDI)is extracted,and the effect of EOCs is well removed.Hence,even for the signals with a very large temperature-varying range and low signal-to-noise ratios(SNRs),the final damage detection and localization accuracy retain perfect 100%.Verifications are conducted on two different experimental datasets.The first dataset consists of guided wave signals collected from a thin aluminum plate with artificial noises,and the second is a publicly available experimental dataset of guided wave signals acquired on a composite plate with a temperature ranging from 20℃to 60℃.It is demonstrated that the proposed method can detect and localize the damage accurately and rapidly,showing great potential for application in complex and unknown EOC.
基金financially supported by China Postdoctoral Science Foundation(Grant No.2023M730365)Natural Science Foundation of Hubei Province of China(Grant No.2023AFB232)。
文摘Gas chromatography-mass spectrometry(GC-MS)is an extremely important analytical technique that is widely used in organic geochemistry.It is the only approach to capture biomarker features of organic matter and provides the key evidence for oil-source correlation and thermal maturity determination.However,the conventional way of processing and interpreting the mass chromatogram is both timeconsuming and labor-intensive,which increases the research cost and restrains extensive applications of this method.To overcome this limitation,a correlation model is developed based on the convolution neural network(CNN)to link the mass chromatogram and biomarker features of samples from the Triassic Yanchang Formation,Ordos Basin,China.In this way,the mass chromatogram can be automatically interpreted.This research first performs dimensionality reduction for 15 biomarker parameters via the factor analysis and then quantifies the biomarker features using two indexes(i.e.MI and PMI)that represent the organic matter thermal maturity and parent material type,respectively.Subsequently,training,interpretation,and validation are performed multiple times using different CNN models to optimize the model structure and hyper-parameter setting,with the mass chromatogram used as the input and the obtained MI and PMI values for supervision(label).The optimized model presents high accuracy in automatically interpreting the mass chromatogram,with R2values typically above 0.85 and0.80 for the thermal maturity and parent material interpretation results,respectively.The significance of this research is twofold:(i)developing an efficient technique for geochemical research;(ii)more importantly,demonstrating the potential of artificial intelligence in organic geochemistry and providing vital references for future related studies.
基金supported by Jiangsu Social Science Foundation(No.20GLD008)Science,Technology Projects of Jiangsu Provincial Department of Communications(No.2020Y14)Joint Fund for Civil Aviation Research(No.U1933202)。
文摘In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness.
基金Supported by the National Science and Technology Major Project(2017ZX05009005-002)
文摘An automatic well test interpretation method for radial composite reservoirs based on convolutional neural network(CNN) is proposed, and its effectiveness and accuracy are verified by actual field data. In this paper, based on the data transformed by logarithm function and the loss function of mean square error(MSE), the optimal CNN is obtained by reducing the loss function to optimize the network with "dropout" method to avoid over fitting. The trained optimal network can be directly used to interpret the buildup or drawdown pressure data of the well in the radial composite reservoir, that is, the log-log plot of the given measured pressure variation and its derivative data are input into the network, the outputs are corresponding reservoir parameters(mobility ratio, storativity ratio, dimensionless composite radius, and dimensionless group characterizing well storage and skin effects), which realizes the automatic initial fitting of well test interpretation parameters. The method is verified with field measured data of Daqing Oilfield. The research shows that the method has high interpretation accuracy, and it is superior to the analytical method and the least square method.
基金supported by the National Natural Science Foundation of China through the Project of Research of Flexible and Adaptive Arc-Suppression Method for Single-Phase Grounding Fault in Distribution Networks(No.51677030).
文摘Effective features are essential for fault diagnosis.Due to the faint characteristics of a single line-to-ground(SLG)fault,fault line detection has become a challenge in resonant grounding distribution systems.This paper proposes a novel fault line detection method using waveform fusion and one-dimensional convolutional neural networks(1-D CNN).After an SLG fault occurs,the first-half waves of zero-sequence currents are collected and superimposed with each other to achieve waveform fusion.The compelling feature of fused waveforms is extracted by 1-D CNN to determine whether the fused waveform source contains the fault line.Then,the 1-D CNN output is used to update the value of the counter in order to identify the fault line.Given the lack of fault data in existing distribution systems,the proposed method only needs a small quantity of data for model training and fault line detection.In addition,the proposed method owns fault-tolerant performance.Even if a few samples are misjudged,the fault line can still be detected correctly based on the full output results of 1-D CNN.Experimental results verified that the proposed method can work effectively under various fault conditions.
基金partially supported by the National Institute for Occupational Safety and Health,contract number 0000HCCR-2019-36403。
文摘Roof falls due to geological conditions are major hazards in the mining industry,causing work time loss,injuries,and fatalities.There are roof fall problems caused by high horizontal stress in several largeopening limestone mines in the eastern and midwestern United States.The typical hazard management approach for this type of roof fall hazards relies heavily on visual inspections and expert knowledge.In this context,we proposed a deep learning system for detection of the roof fall hazards caused by high horizontal stress.We used images depicting hazardous and non-hazardous roof conditions to develop a convolutional neural network(CNN)for autonomous detection of hazardous roof conditions.To compensate for limited input data,we utilized a transfer learning approach.In the transfer learning approach,an already-trained network is used as a starting point for classification in a similar domain.Results show that this approach works well for classifying roof conditions as hazardous or safe,achieving a statistical accuracy of 86.4%.This result is also compared with a random forest classifier,and the deep learning approach is more successful at classification of roof conditions.However,accuracy alone is not enough to ensure a reliable hazard management system.System constraints and reliability are improved when the features used by the network are understood.Therefore,we used a deep learning interpretation technique called integrated gradients to identify the important geological features in each image for prediction.The analysis of integrated gradients shows that the system uses the same roof features as the experts do on roof fall hazards detection.The system developed in this paper demonstrates the potential of deep learning in geotechnical hazard management to complement human experts,and likely to become an essential part of autonomous operations in cases where hazard identification heavily depends on expert knowledge.Moreover,deep learning-based systems reduce expert exposure to hazardous conditions.
基金supported by the Opening Fund of Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education of China(Chongqing University)(No.LLEUTS-202305)the National Natural Science Foundation of China(No.51906181)+4 种基金the Youth Innovation Technology Project of Higher School in Shandong Province(No.2022KJ204)“The 14th Five Year Plan”Hubei Provincial advantaged characteristic disciplines(groups)project of Wuhan University of Science and Technology(No.2023D0504,No.2023D0501)the Opening Fund of State Key Laboratory of Green Building in Western China(No.LSKF202316)Hubei Undergraduate Training Program for Innovation and Entrepreneurship(No.S202210488076)the Wuhan University of Science and Technology Postgraduate Innovation and Entrepreneurship Fund(JCX2023026).
文摘Deep learning(DL),especially convolutional neural networks(CNNs),has been widely applied in air handling unit(AHU)fault diagnosis(FD).However,its application faces two major challenges.Firstly,the accessibility of operational state variables for AHU systems is limited in practical,and the effectiveness and applicability of existing DL methods for diagnosis require further validation.Secondly,the interpretability performance of DL models under various information scenarios needs further exploration.To address these challenges,this study utilized publicly available ASHRAE RP-1312 AHU fault data and employed CNNs to construct three FD models under three various information scenarios.Furthermore,the layer-wise relevance propagation(LRP)method was used to interpret and explain the effects of these three various information scenarios on the CNN models.An R-threshold was proposed to systematically differentiate diagnostic criteria,which further elucidates the intrinsic reasons behind correct and incorrect decisions made by the models.The results showed that the CNN-based diagnostic models demonstrated good applicability under the three various information scenarios,with an average diagnostic accuracy of 98.55%.The LRP method provided good interpretation and explanation for understanding the decision mechanism of CNN models for the unlimited information scenarios.For the very limited information scenario,since the variables are restricted,although LRP can reveal key variables in the model’s decision-making process,these key variables have certain limitations in terms of data and physical explanations for further improving the model’s interpretation.Finally,an in-depth analysis of model parameters—such as the number of convolutional layers,learning rate,βparameters,and training set size—was conducted to examine their impact on the interpretative results.This study contributes to clarifying the effects of various information scenarios on the diagnostic performance and interpretability of LRP-based CNN models for AHU FD,which helps provide improved reliability of DL models in practical applications.