期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Interfacial reaction product and mechanical properties of the electron beam brazed K465 Ni-based superalloy joints 被引量:1
1
作者 王刚 张秉刚 +2 位作者 何景山 冯吉才 吴英杰 《China Welding》 EI CAS 2008年第2期32-36,共5页
Ni-based superalloy K465 is brazed with BNi-2 filler metal by vacuum electron beam brazing (VEBB). In process of VEBB, effects of processing primary parameters on shear strength of joints are investigated. Microstru... Ni-based superalloy K465 is brazed with BNi-2 filler metal by vacuum electron beam brazing (VEBB). In process of VEBB, effects of processing primary parameters on shear strength of joints are investigated. Microstructure of the brazed joint with BNi-2 filler metal is studied by means of scanning electron microscopy ( SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the structure of brazed seam consists of a large amount of Ni- based γ solid solution, Ni3Al ( γ') , Ni3B, WB, CrB, and a small quantity of WC, NbC, The maximum shear strength of the joint is 398 MPa when the beam current of welding is 2.6 mA, heating time is 480 s and focused current is 1 800 mA. 展开更多
关键词 electron beam BRAZING interracial reaction product shear strength
下载PDF
Interfacial Reaction Between Solid Nickel and Liquid Zinc
2
作者 孔纲 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第5期712-716,共5页
Interfacial reactions between solid nickel and liquid zinc at 450-650 ℃ for 30-600 s were studied. The morphology and growth behavior of intermetallic compound layers at the interface between solid nickel and liquid ... Interfacial reactions between solid nickel and liquid zinc at 450-650 ℃ for 30-600 s were studied. The morphology and growth behavior of intermetallic compound layers at the interface between solid nickel and liquid zinc were observed and analyzed by SEM and EDS. The results show that γ and 8 phases are formed at 450 ℃ at the Ni/Zn interface, and at 550 ℃ and 650 ℃ only ),phase is formed at the interthce and some δ phase particles will be participated during solidification on the surface of γphase layer. The β1 phase is absent under experimental conditions. Many cracks occur in the layers due to the difference in thermal expansion coefficients of these phases. It is found that the kinetics of the intermetallic compounds growth follows a parabolic law of time, as controlled by the diffusion mechanism. The apparent activation energies are 113.9 kJ/mol for the growth of γphase and 125.87 kJ/mol for γ1 phase, respectively. 展开更多
关键词 interracial reaction DIFFUSION liquid zinc solid nickel
下载PDF
Study on NiO/Fe interface with X-ray photoelectron spectroscopy
3
作者 Chun Feng Jing-yan Zhang +1 位作者 Jiao Teng Fu-ming Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第6期777-781,共5页
Different monolayers (ML) of Fe atoms were deposited on NiO (001) substrates or NiO underlayers using molecular beam epitaxy (MBE), pulse laser deposition (PLD), and magnetron sputtering (MS). The magnetic p... Different monolayers (ML) of Fe atoms were deposited on NiO (001) substrates or NiO underlayers using molecular beam epitaxy (MBE), pulse laser deposition (PLD), and magnetron sputtering (MS). The magnetic properties and microstructure of the films were studied. The apparent magnetic dead layer (MDL) is found to exist at the NiO/Fe interfaces of the MBE sample (about 2 ML MDL), the PLD sample (about 3 ML MDL), and the MS sample (about 4 ML MDL). X-ray photoelectron spectroscopy indicates the presence of ionic Fe (Fe2+ or Fe3+) and metallic Ni at the NiO/Fe interfaces, which may be due to the chemical reactions between Fe and NiO layers. This also leads to the formation of MDL. The thickness of the MDL and the reaction products are related with the deposition energy of the atoms on the substrates. The interfacial reactions are effectively suppressed by inserting a thin Pt layer at the NiO/Fe interface. 展开更多
关键词 interracial reaction magnetic films X-ray photoelectron spectroscopy magnetic properties MICROSTRUCTURE
下载PDF
Joining of C_f/SiBCN composite with two Ni-based brazing fillers and interfacial reactions 被引量:2
4
作者 Wenwen Li Bo Chen +3 位作者 Yi Xiong Huaping Xiong Yaoyong Cheng Wenjiang Zou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第5期487-491,共5页
G/SiBCN ceramic composite was joined using Ni-19Cr-10Si (BNi5) and Ni-33Cr-24Pd-3.5Si-0.5B filler alloys at 1170 ℃ for 10 min. Two kinds of Ni-based filler alloys exhibited good wettability on the CdSiBCN com- posi... G/SiBCN ceramic composite was joined using Ni-19Cr-10Si (BNi5) and Ni-33Cr-24Pd-3.5Si-0.5B filler alloys at 1170 ℃ for 10 min. Two kinds of Ni-based filler alloys exhibited good wettability on the CdSiBCN com- posite, with a contact angle of 13° and 4°, respectively, The microstructures of the brazed joints were investigated by electron-probe microanalysis (EPMA), and three-point bend test was conducted for the joints at room temperature. When being brazed with BNi5 filler alloy, no evident reaction layer was ob- served at the surface of the joined composite, and the joint microstructure was characterized by Ni2Si matrix with scatteringly distributing mixture compounds of Cr23C6, Ni2Si and CrB. While Ni-Cr-Pd(Si,B) brazing alloy was used, a Cr23C6 reaction layer with a thickness of 11 μm was formed at the surface of the base composite. In the central part of the brazed joint, the phases were composed of Ni(Cr, Si) solid solution and complex compounds including Pd2Si, (Ni,Pd)2Si and Ni-B. The strength of Cf/SiBCN joint brazed with BNi5 filler alloy was 62.9 MPa at room temperature, whereas that with Ni-Cr-Pd(Si,B) filler alloy was at the same level. 展开更多
关键词 Cf/SiBCN composite Brazing Microstructure Joint strength interracial reaction
原文传递
Solid-Liquid State Bonding of Si3N4 Ceramics with Ceramic-Modified Brazing Alloy 被引量:6
5
作者 杨俊 吴爱萍 +2 位作者 邹贵生 张德库 刘根茂 《Tsinghua Science and Technology》 SCIE EI CAS 2004年第5期601-606,共6页
Solid-liquid state bonding of Si3N4 ceramics with TiN-modified Ag-Cu-Ti brazing alloy was used'- to enhance joint strength. The effects of the TiN particles on the microstructures, interfacial reactions, and roo... Solid-liquid state bonding of Si3N4 ceramics with TiN-modified Ag-Cu-Ti brazing alloy was used'- to enhance joint strength. The effects of the TiN particles on the microstructures, interfacial reactions, and room-temperature properties of the joints were investigated. The results show that the TiN particles are gen- erally well dispersed in the Ag-Cu eutectic base and the interface between them is both clean and com-pact. Changes in the TiN volume fractions from 0 to 20% exert no noticeable effect on the interfacial reac-tion between Ag-Cu-Ti and the substrates. Other bonding parameters being constant, the TiN volume frac-tion in the filler material plays a key role in the joint properties. For TiN volume fractions below 20%, the joints are reinforced, especially joints with 5% and 20% TiN. The average shearing strength of joints with 5% TiN is 200.8 MPa, 30% higher than that of joints with no TiN (154.1 MPa). However, for TiN volumes frac- tions above 20%, the joint strengths decrease. 展开更多
关键词 solid-liquid state bonding Si3N4 ceramics ceramic-modified brazing alloy interracial reactions room-temperature properties of joints
原文传递
Microstructure and Property of AlN Joint Brazed with Au–Pd–Co–Ni–V Brazing Filler 被引量:2
6
作者 Bo Chen Huaping Xiong +2 位作者 Yaoyong Cheng Wei Mao Shibiao Wu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第10期1034-1038,共5页
An Au-Pd-Co-Ni-V brazing alloy was designed for AIN ceramic joining. Its wettability on AIN was studied with the sessile drop method. The results showed that the contact angle was decreased gradu- ally with increasing... An Au-Pd-Co-Ni-V brazing alloy was designed for AIN ceramic joining. Its wettability on AIN was studied with the sessile drop method. The results showed that the contact angle was decreased gradu- ally with increasing temperature and the prolonging of holding time. Sound AIN/AIN joints were achieved with the brazing alloy at 1170 ℃ for 10 min. The microstructure of the AIN/AIN joints was examined by scanning electron microscopy (SEM). It was found that element V played the active role in the interfacial reaction between the ceramic and the brazing alloy, V reacted with N decomposed from AIN, resulted in the formation of V-N compound. Based on the energy-dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analysis results, the V-N reaction product was verified as V2N. The overall reaction during the brazing process can be described by the following equation: 2V + AIN + 2Pd = V2N + Pd2AI. The AIN/AIN joints brazed with the Au-Pd-Co-Ni-V brazing alloy exhibited three-point bend strength of 162.7 MPa at room temperature, and under the bend test the fracture of the joint occurred at the AIN ceramic substrate. 展开更多
关键词 AIN Brazing interracial reaction Joints
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部