We describe and experimentally demonstrate a measuring technique for Mach–Zehnder interferometer(MZI)based integrated photonic biochemical sensors. Our technique is based on the direct measurement of phase changes be...We describe and experimentally demonstrate a measuring technique for Mach–Zehnder interferometer(MZI)based integrated photonic biochemical sensors. Our technique is based on the direct measurement of phase changes between the arms of the MZI, achieved by signal modulation on one of the arms of the interferometer together with pseudoheterodyne detection, and it allows us to avoid the use of costly equipment such as tunable light sources or spectrum analyzers. The obtained output signal is intrinsically independent of wavelength, power variations, and global thermal variations, making it extremely robust and adequate for use in real conditions. Using a silicon-on-insulator MZI, we demonstrate the real-time monitoring of refractive index variations and achieve a detection limit of 4.1 × 10^(-6)refractive index units(RIU).展开更多
文摘We describe and experimentally demonstrate a measuring technique for Mach–Zehnder interferometer(MZI)based integrated photonic biochemical sensors. Our technique is based on the direct measurement of phase changes between the arms of the MZI, achieved by signal modulation on one of the arms of the interferometer together with pseudoheterodyne detection, and it allows us to avoid the use of costly equipment such as tunable light sources or spectrum analyzers. The obtained output signal is intrinsically independent of wavelength, power variations, and global thermal variations, making it extremely robust and adequate for use in real conditions. Using a silicon-on-insulator MZI, we demonstrate the real-time monitoring of refractive index variations and achieve a detection limit of 4.1 × 10^(-6)refractive index units(RIU).