期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Experimental and numerical investigation of droplet flow mechanisms at fracture intersections
1
作者 Cao Luo Zexiong Zhou +2 位作者 Chi Yao Zhibing Yang Chuangbing Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2024年第11期4669-4682,共14页
Understanding unsaturated flow behaviors in fractured rocks is essential for various applications.A fundamental process in this regard is flow splitting at fracture intersections.However,the impact of geometrical prop... Understanding unsaturated flow behaviors in fractured rocks is essential for various applications.A fundamental process in this regard is flow splitting at fracture intersections.However,the impact of geometrical properties of fracture intersections on flow splitting is still unclear.This work investigates the combined influence of geometry(intersection angle,fracture apertures,and inclination angle),liquid droplet length,inertia,and dynamic wetting properties on liquid splitting dynamics at fracture intersections.A theoretical model of liquid splitting is developed,considering the factors mentioned above,and numerically solved to predict the flow splitting behavior.The model is validated against carefullycontrolled visualized experiments.Our results reveal two distinct splitting behaviors,separated by a critical droplet length.These behaviors shift from a monotonic to a non-monotonic trend with decreasing inclination angle.A comprehensive analysis further clarifies the impacts of the key factors on the splitting ratio,which is defined as the percentage of liquid volume entering the branch fracture.The splitting ratio decreases with increasing inclination angle,indicating a decrease in the gravitational effect on the branch fracture,which is directly proportional to the intersection angle.A non-monotonic relationship exists between the splitting ratio and the aperture ratio of the branch fracture to the main fracture.The results show that as the intersection angle decreases,the splitting ratio increases.Additionally,the influence of dynamic contact angles decreases with increasing intersection angle.These findings enhance our understanding of the impact of geometry on flow dynamics at fracture intersections.The proposed model provides a foundation for simulating and predicting unsaturated flow in complex fractured networks. 展开更多
关键词 Fracture rock Fracture intersection Unsaturated flow intersection angle
下载PDF
AN EIGENVALUE METHOD ON GROUP DECISION
2
作者 邱菀华 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1997年第11期0-0,0-0+0-0,共6页
In this paper. a new group decision eigenvalue method abbreviated as GEM isproposed. It overcomes the non-consistence of judgement matrix and will open up anew route for the selection of experts in the decision system.
关键词 group decision ideal expert intersection angles
下载PDF
Stress and Fracture Strength Analysis for Three-Way Pipes 被引量:3
3
作者 XU Jing-jing, WU Yi-min School of Electromechanical Engineering and Automation, Shanghai University, Shanghai 200072, China 《Advances in Manufacturing》 SCIE CAS 2000年第S1期11-15,共5页
Three-way pipes, T and Y pipes, are very important connecting components in pipeline systems, their strength are related to the safety of pipelines. In the case that crack is not detected in the three-way pipe, ANSYS ... Three-way pipes, T and Y pipes, are very important connecting components in pipeline systems, their strength are related to the safety of pipelines. In the case that crack is not detected in the three-way pipe, ANSYS finite element program version 5.6 is applied to study the stress distribution of the three-way pipe and to obtain the optimum fillet radius in the crotch region of the two pipes. The reasonable intersection angle of the two pipes is also obtained. In the case that a surface crack is detected in the three-way pipe, the maximum stress intensity factor (SIF) near the front of the surface crack is studied. 展开更多
关键词 three-way pipes intersection angle CRACK fracture strength stress intensity factor (SIF) Kscc
下载PDF
Analysis of dynamic features in intersecting pedestrian flows 被引量:1
4
作者 董海荣 孟琦 +2 位作者 姚秀明 杨晓霞 王千龄 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期557-564,共8页
This paper focuses on the simulation analysis of stripe formation and dynamic features of intersecting pedestrian flows.The intersecting flows consist of two streams of pedestrians and each pedestrian stream has a des... This paper focuses on the simulation analysis of stripe formation and dynamic features of intersecting pedestrian flows.The intersecting flows consist of two streams of pedestrians and each pedestrian stream has a desired walking direction.The model adopted in the simulations is the social force model, which can reproduce the self-organization phenomena successfully. Three scenarios of different cross angles are established. The simulations confirm the empirical observations that there is a stripe formation when two streams of pedestrians intersect and the direction of the stripes is perpendicular to the sum of the directional vectors of the two streams. It can be concluded from the numerical simulation results that smaller cross angle results in higher mean speed and lower level of speed fluctuation. Moreover, the detailed pictures of pedestrians' moving behavior at intersections are given as well. 展开更多
关键词 intersecting pedestrian flows social force model stripes formation cross angle
下载PDF
Analysis of heat transfer performance for turbulent viscoelastic fluid-based nanofluid using field synergy principle 被引量:2
5
作者 YANG JuanCheng LI FengChen +1 位作者 NI MingJiu YU Bo 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第7期1137-1145,共9页
In this paper,the field synergy principle is firstly performed on the viscoelastic fluid-based nanofluid and other relevant fluid in channel at turbulent flow state to scrutinize their heat transfer performance based ... In this paper,the field synergy principle is firstly performed on the viscoelastic fluid-based nanofluid and other relevant fluid in channel at turbulent flow state to scrutinize their heat transfer performance based on our direct numerical simulation database.The cosine values of intersection angle between velocity vector and temperature gradient vector are calculated for different simulated cases with varying nanoparticle volume fraction,nanoparticle diameter,Reynolds number and Weissenberg number.It is found that the filed synergy effect is enhanced when the nanoparticle volume fraction is increased,nanoparticle diameter is decreased and Weissenberg number is decreased,i.e.the heat transfer is also enhanced.However,the filed synergy effect is weakened with the increase of Reynolds number which may be the possible reason for the power function relationship in empirical correlation of heat transfer between heat transfer performance and Reynolds number with the constant power exponent lower than 1.Finally,it is also observed that the field synergy principle can be used to analyze the heat transfer process of viscoelastic fluid-based nanofluid at the turbulent flow state even if some negative cosine values of intersection angle exist in the flow field. 展开更多
关键词 viscoelastic fluid-based nanofluid filed synergy principle intersection angle turbulent drag reduction heat transferenhancement
原文传递
Centrifuge modeling of tunneling-induced ground surface settlement in sand 被引量:1
6
作者 Hu Lu Jiangwei Shi +1 位作者 Yu Wang Rong Wang 《Underground Space》 SCIE EI 2019年第4期302-309,共8页
Stress changes in the soil induced by tunnel excavation may cause excessive ground settlement.However,high-quality experimental data on ground settlement due to tunnel excavation are limited.In this study,centrifuge t... Stress changes in the soil induced by tunnel excavation may cause excessive ground settlement.However,high-quality experimental data on ground settlement due to tunnel excavation are limited.In this study,centrifuge tests are conducted to investigate the threedimensional ground surface settlement,considering different intersection angles and cover-to-tunnel diameter ratios.The results indicate that the major influence zone along the longitudinal direction on the ground surface settlement is±1.25D,where D is the tunnel diameter.When the monitoring section is perpendicular to the tunneling direction,the transverse ground settlement due to the tunnel excavation is symmetrical with respect to the tunnel centerline.In contrast,an asymmetric ground settlement profile is observed when the monitoring section intersects the tunneling direction at an angle of 60.Applying a Gaussian curve to fit the ground surface settlement curve,the width parameter,K(i.e.,the distance between the tunnel centerline and the inflection point of the settlement trough to the tunnel burial depth),varies from 0.33 to 0.39.The ground surface settlement induced by twin tunnel excavation can be captured reasonably by superimposing two identical Gaussian curves.When the cover to tunnel diameter ratios(C/D)are 1.5 and 2.7,the maximum ground surface settlements are 0.67%of D and 0.35%of D,respectively.It is clear that the maximum ground surface settlement decreases with an increase in the C/D ratio. 展开更多
关键词 Ground settlement Centrifuge modeling intersection angle Cover-to-tunnel diameter Three-dimensional
原文传递
Numerical simulation of effect of various parameters on atomization in an annular slit atomizer
7
作者 Yi Wang Yi-chen Dang +4 位作者 Xiao-qing Chen Bao Wang Zhong-qiu Liu Jian-an Zhou Chang-yong Chen 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第6期1128-1141,共14页
As the width-thickness ratio of the discrete nozzle atomizer’s discrete hole greatly influences the loss of atomizing gas flow rate,the discrete nozzle atomizer was transformed into an annular slit atomizer with the ... As the width-thickness ratio of the discrete nozzle atomizer’s discrete hole greatly influences the loss of atomizing gas flow rate,the discrete nozzle atomizer was transformed into an annular slit atomizer with the same total nozzle outlet area.A numerical simulation study on the effect of various parameters on the atomization in the annular slit atomizer was carried out by coupling both the large eddy simulation(LES)and volume of fluid(VOF)model,which is based on the applicability of LES in capturing the breakup behavior of transient liquid droplets and the advantage of VOF method in directly capturing the phase interface.The simulation results showed that the increase in the atomization pressure makes the gas gain higher momentum,while the increase in the nozzle intersection angle decreases the distance between the nozzle exit and the computational domain axis.The increase in these two variables results in enhancing the gas-liquid interaction in the primary atomization zone and the formation of more aluminum droplets simultaneously.It is considered that the atomization effect becomes better when atomization pressure is 2.5 MPa,and the nozzle intersection angle is 60°.Industrial tests showed that the aluminum powder prepared by the optimized annular slit atomizer has a finer mean particle size and a higher yield of fine powder.The numerical simulation results agree well with the industrial test data of the powder particle size. 展开更多
关键词 Annular slit atomizer Volume of fluid model Atomization process Atomization pressure Nozzle intersection angle Atomization effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部