The intersection method is one of the basic approaches for locating earthquakes and is not only robust but also efficient. However, its location accuracy is not high, especially for focal depth because the velocity mo...The intersection method is one of the basic approaches for locating earthquakes and is not only robust but also efficient. However, its location accuracy is not high, especially for focal depth because the velocity model used for the conventional intersection method is based on homogeneous or laterally homogeneous media, which is too simple. In order to improve the accuracy, we have modified the existing intersection method. In the modified approach, the earthquake loci are not assumed to be circular or hyperbolic and calculation accuracy is improved using a minimum traveltime tree algorithm for tracing rays. The numerical model shows that the modified method can locate earthquakes in complex velocity models.展开更多
Optimization analysis and computational fluid dynamics (CFDs) have been applied simultaneously, in which a parametric model plays an important role in finding the optimal solution. However, it is difficult to create...Optimization analysis and computational fluid dynamics (CFDs) have been applied simultaneously, in which a parametric model plays an important role in finding the optimal solution. However, it is difficult to create a parametric model for a complex shape with irregular curves, such as a submarine hull form. In this study, the cubic Bezier curve and curve-plane intersection method are used to generate a solid model of a parametric submarine hull form taking three input parameters into account: nose radius, tail radius, and length-height hull ratio (L/H). Application program interface (API) scripting is also used to write code in the ANSYS DesignModeler. The results show that the submarine shape can be generated with some variation of the input parameters. An example is given that shows how the proposed method can be applied successfully to a hull resistance optimization case. The parametric design of the middle submarine type was chosen to be modified. First, the original submarine model was analyzed, in advance, using CFD. Then, using the response surface graph, some candidate optimal designs with a minimum hull resistance coefficient were obtained. Further, the optimization method in goal-driven optimization (GDO) was implemented to find the submarine hull form with the minimum hull resistance coefficient (Ct). The minimum C, was obtained. The calculated difference in (7, values between the initial submarine and the optimum submarine is around 0.26%, with the C, of the initial submarine and the optimum submarine being 0.001 508 26 and 0.001 504 29, respectively. The results show that the optimum submarine hull form shows a higher nose radius (rn) and higher L/H than those of the initial submarine shape, while the radius of the tail (r1) is smaller than that of the initial shape.展开更多
This study explored the use of queue clearance rate method for estimating passenger car equivalent (PCE) at signalized intersections. PCE was estimated based on the assumption that the rate at which a queue of vehic...This study explored the use of queue clearance rate method for estimating passenger car equivalent (PCE) at signalized intersections. PCE was estimated based on the assumption that the rate at which a queue of vehicles clears the intersection is a function of its composition. Results of this method were compared with the results estimated by some popular techniques. A fourqegged intersection was simulated in VISSIM software and different techniques were used to convert the traffic mix into a uniform one. Parameters of VISSIM were modified to closely reflect the traffic behaviour under heterogeneous traffic conditions. All approaches of the intersection were loaded to saturated conditions and accuracy of estimated PCEs were established by comparing converted flow (PCE/h) with the capacity of an all-car traffic stream. Method based on saturation flow delivered the best result, but its use was limited to traffic composed only of two types of vehicles. Results of regression and optimization techniques were almost similar and the converted flow was close to the capacity of all-car stream. However, accuracy of these methods strongly relied on the correct measurement of saturation flow. Queue clearance rate method did not require value of saturation flow and yielded good estimates of PCE throughout the simu- lation runs. The maximum difference between the converted flow and capacity estimated with all car situations was found to be less than 10% in all cases considered in this study.展开更多
基金This work is supported by the National Natural Science Foundation of China(40674044)the Special Foundation for Basic Professional Scientific Research (DQJB06A02)
文摘The intersection method is one of the basic approaches for locating earthquakes and is not only robust but also efficient. However, its location accuracy is not high, especially for focal depth because the velocity model used for the conventional intersection method is based on homogeneous or laterally homogeneous media, which is too simple. In order to improve the accuracy, we have modified the existing intersection method. In the modified approach, the earthquake loci are not assumed to be circular or hyperbolic and calculation accuracy is improved using a minimum traveltime tree algorithm for tracing rays. The numerical model shows that the modified method can locate earthquakes in complex velocity models.
基金Supported by the Ministry of Research,Technology,and Higher Education Republic of Indonesia,through the Budget Implementation List(DIPA)of Diponegoro University,Grant No.DIPA-023.04.02.189185/2014,December 05,2013
文摘Optimization analysis and computational fluid dynamics (CFDs) have been applied simultaneously, in which a parametric model plays an important role in finding the optimal solution. However, it is difficult to create a parametric model for a complex shape with irregular curves, such as a submarine hull form. In this study, the cubic Bezier curve and curve-plane intersection method are used to generate a solid model of a parametric submarine hull form taking three input parameters into account: nose radius, tail radius, and length-height hull ratio (L/H). Application program interface (API) scripting is also used to write code in the ANSYS DesignModeler. The results show that the submarine shape can be generated with some variation of the input parameters. An example is given that shows how the proposed method can be applied successfully to a hull resistance optimization case. The parametric design of the middle submarine type was chosen to be modified. First, the original submarine model was analyzed, in advance, using CFD. Then, using the response surface graph, some candidate optimal designs with a minimum hull resistance coefficient were obtained. Further, the optimization method in goal-driven optimization (GDO) was implemented to find the submarine hull form with the minimum hull resistance coefficient (Ct). The minimum C, was obtained. The calculated difference in (7, values between the initial submarine and the optimum submarine is around 0.26%, with the C, of the initial submarine and the optimum submarine being 0.001 508 26 and 0.001 504 29, respectively. The results show that the optimum submarine hull form shows a higher nose radius (rn) and higher L/H than those of the initial submarine shape, while the radius of the tail (r1) is smaller than that of the initial shape.
文摘This study explored the use of queue clearance rate method for estimating passenger car equivalent (PCE) at signalized intersections. PCE was estimated based on the assumption that the rate at which a queue of vehicles clears the intersection is a function of its composition. Results of this method were compared with the results estimated by some popular techniques. A fourqegged intersection was simulated in VISSIM software and different techniques were used to convert the traffic mix into a uniform one. Parameters of VISSIM were modified to closely reflect the traffic behaviour under heterogeneous traffic conditions. All approaches of the intersection were loaded to saturated conditions and accuracy of estimated PCEs were established by comparing converted flow (PCE/h) with the capacity of an all-car traffic stream. Method based on saturation flow delivered the best result, but its use was limited to traffic composed only of two types of vehicles. Results of regression and optimization techniques were almost similar and the converted flow was close to the capacity of all-car stream. However, accuracy of these methods strongly relied on the correct measurement of saturation flow. Queue clearance rate method did not require value of saturation flow and yielded good estimates of PCE throughout the simu- lation runs. The maximum difference between the converted flow and capacity estimated with all car situations was found to be less than 10% in all cases considered in this study.