This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By i...This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.展开更多
Motivated to obtain the second critical point of a nonlinear differential equation, which is expressed by derivatives of convex functional defined on a Banach space, an estimate with is given to see the relation ...Motivated to obtain the second critical point of a nonlinear differential equation, which is expressed by derivatives of convex functional defined on a Banach space, an estimate with is given to see the relation between f<sup>-1</sup>(0) and g<sup>-1</sup>(0). And both the Fréchet differentiability and the continuity of Fréchet derivative of every convex functional defined on an open subset of a Banach space are shown.展开更多
We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization p...We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization parameters through the wireless network,large-scale training models can create communication bottlenecks,resulting in slower training times.To address this issue,CHOCO-SGD was proposed,which allows compressing information with arbitrary precision without reducing the convergence rate for strongly convex objective functions.Nevertheless,most convex functions are not strongly convex(such as logistic regression or Lasso),which raises the question of whether this algorithm can be applied to non-strongly convex functions.In this paper,we provide the first theoretical analysis of the convergence rate of CHOCO-SGD on non-strongly convex objectives.We derive a sufficient condition,which limits the fidelity of compression,to guarantee convergence.Moreover,our analysis demonstrates that within the fidelity threshold,this algorithm can significantly reduce transmission burden while maintaining the same convergence rate order as its no-compression equivalent.Numerical experiments further validate the theoretical findings by demonstrating that CHOCO-SGD improves communication efficiency and keeps the same convergence rate order simultaneously.And experiments also show that the algorithm fails to converge with low compression fidelity and in time-varying topologies.Overall,our study offers valuable insights into the potential applicability of CHOCO-SGD for non-strongly convex objectives.Additionally,we provide practical guidelines for researchers seeking to utilize this algorithm in real-world scenarios.展开更多
In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Su...In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.展开更多
The aim of this paper is to investigate the differentiability(Gateaux differentiabllity and subdifferentiability) of continuous convex functions on locally convex spaces and to study the behaviour of some important re...The aim of this paper is to investigate the differentiability(Gateaux differentiabllity and subdifferentiability) of continuous convex functions on locally convex spaces and to study the behaviour of some important results for this research area in locally convex spaces.展开更多
Characterizations of differentiability are obtained for continuous convex functions defined on nonempty open convex sets of Banach spaces as a generalization and application of a mumber of mathematicians several years...Characterizations of differentiability are obtained for continuous convex functions defined on nonempty open convex sets of Banach spaces as a generalization and application of a mumber of mathematicians several years effort, and a characteristic theorem is given for Banach spaces which are (weak) Asplund spaces.展开更多
In this paper we derive certain sufficient conditions for starlikeness and convexity of order α of meromorphically multivalent functions in the punctured unit disk.
Denote S to be the class of functions which are analytic,normalized and univalent in the open unit disk U={z:|z|<1}.The important subclasses of S are the class of starlike and convex functions,which we denote by S ...Denote S to be the class of functions which are analytic,normalized and univalent in the open unit disk U={z:|z|<1}.The important subclasses of S are the class of starlike and convex functions,which we denote by S and C.In this paper,we obtain the third Hankel determinant for the inverse of functions f(z)=z+∞Σn=2 anz^n belonging to S^*and C.展开更多
In this paper, the so-called approximate convexity and concavity properties of generalized Groetzsch ring function μa (r) by studying the monotonieity,convexity or concavity of certain composites of μa(r) are ob...In this paper, the so-called approximate convexity and concavity properties of generalized Groetzsch ring function μa (r) by studying the monotonieity,convexity or concavity of certain composites of μa(r) are obtained.展开更多
Schur convexity, Schur geometrical convexity and Schur harmonic convexityof a class of symmetric functions are investigated. As consequences some knowninequalities are generalized. In addition, a class of geometric in...Schur convexity, Schur geometrical convexity and Schur harmonic convexityof a class of symmetric functions are investigated. As consequences some knowninequalities are generalized. In addition, a class of geometric inequalities involvingn-dimensional simplex in n-dimensional Euclidean space En and several matrix inequalitiesare established to show the applications of our results.展开更多
In this paper, we shall establish an inequality for differentiable co-ordinated convex functions on a rectangle from the plane. It is connected with the left side and right side of extended Hermite-Hadamard inequality...In this paper, we shall establish an inequality for differentiable co-ordinated convex functions on a rectangle from the plane. It is connected with the left side and right side of extended Hermite-Hadamard inequality in two variables. In addition, six other inequalities are derived from it for some refinements. Finally, this paper shows some examples that these inequalities are able to be applied to some special means.展开更多
Based on the ordering of fuzzy numbers proposed by Goetschel and Voxman,the representations and some properties of strongly preinvex fuzzy-valued function are defined and obtained, several new concepts of strongly mon...Based on the ordering of fuzzy numbers proposed by Goetschel and Voxman,the representations and some properties of strongly preinvex fuzzy-valued function are defined and obtained, several new concepts of strongly monotonicities fuzzy functions are introduced, the relationship among the strongly preinvex, strongly invex and monotonicities under some suitable and appropriate conditions is established and a necessary condition for strongly pseudoinvex functions is given. As an application, the conditions of local optimal solution and global optimal solution in the mathematical programming problem are discussed.展开更多
In this paper, we introduce and study some new classes of biconvex functions with respect to an arbitrary function and a bifunction, which are called the higher order strongly biconvex functions. These functions are n...In this paper, we introduce and study some new classes of biconvex functions with respect to an arbitrary function and a bifunction, which are called the higher order strongly biconvex functions. These functions are nonconvex functions and include the biconvex function, convex functions, and <i>k</i>-convex as special cases. We study some properties of the higher order strongly biconvex functions. Several parallelogram laws for inner product spaces are obtained as novel applications of the higher order strongly biconvex affine functions. It is shown that the minimum of generalized biconvex functions on the <i>k</i>-biconvex sets can be characterized by a class of equilibrium problems, which is called the higher order strongly biequilibrium problems. Using the auxiliary technique involving the Bregman functions, several new inertial type methods for solving the higher order strongly biequilibrium problem are suggested and investigated. Convergence analysis of the proposed methods is considered under suitable conditions. Several important special cases are obtained as novel applications of the derived results. Some open problems are also suggested for future research.展开更多
In this paper we study integer multiplicity rectifiable currents carried by the subgradient (subdifferential) graphs of semi-convex functions on an n-dimensional convex domain, and show a weak continuity theorem wit...In this paper we study integer multiplicity rectifiable currents carried by the subgradient (subdifferential) graphs of semi-convex functions on an n-dimensional convex domain, and show a weak continuity theorem with respect to pointwise convergence for such currents. As an application, the structure theorem of the Lagrangian currents for semi-convex functions is given and the k-Hessian measures are calculated by a different method in terms of currents.展开更多
The definition of geodesic E-quasiconvex functions is established in a geodesic metric space. Meanwhile, the relations of geodesic E-quasiconvex functions, geodesic Econvex functions and geodesic E-almostconvex functi...The definition of geodesic E-quasiconvex functions is established in a geodesic metric space. Meanwhile, the relations of geodesic E-quasiconvex functions, geodesic Econvex functions and geodesic E-almostconvex functions are studied. Furthermore, the notion of E-epigraphs is generalized to geodesic E-epigraphs and a characterization of geodesic E-quasiconvex functions in terms of its geodesic E-epigraphs is considered.展开更多
Hanson and Mond have grven sets of necessary and sufficient conditions for optimality in constrained optimization by introducing classes of generalized functions, called type Ⅰ functions. Recently, Bector definded un...Hanson and Mond have grven sets of necessary and sufficient conditions for optimality in constrained optimization by introducing classes of generalized functions, called type Ⅰ functions. Recently, Bector definded univex functions, a new class of functions that unifies several concepts of generalized convexity. In this paper, additional conditions are attached to the Kuhn Tucker conditions giving a set of conditions which are both necessary and sufficient for optimality in constrained optimization, under appropriate constraint qualifications.展开更多
Let Jn(α,A,B),α≥0,-1≤B<A≤1,n≥1,denote the class of functions f(z)=z+∑k=n+1^∞αkZ^k which are analytic in E={z:|z|<1} and satisfy the conditions f(z)f′(z)/z≠0 and (1-α)zf′(z)/f(z)+α(1+zf″(z)/f′(z))...Let Jn(α,A,B),α≥0,-1≤B<A≤1,n≥1,denote the class of functions f(z)=z+∑k=n+1^∞αkZ^k which are analytic in E={z:|z|<1} and satisfy the conditions f(z)f′(z)/z≠0 and (1-α)zf′(z)/f(z)+α(1+zf″(z)/f′(z))-<1+Az/1+Bz for z∈E.In this paper we obtain incluion relations,distortion properties and estimates of |αn+2-λα^2n+1| for the class Jn(α,A,B),where λ is complex.展开更多
In this article, we prove that the symmetric function Fn(x,r)=∑i1+i2+……in=r(x1(i1x2^i2……xn^in)1/r is Schur harmonic convex for x ∈ R+n and r ∈N -=(1, 2, 3,...} As its applications, some analytic inequa...In this article, we prove that the symmetric function Fn(x,r)=∑i1+i2+……in=r(x1(i1x2^i2……xn^in)1/r is Schur harmonic convex for x ∈ R+n and r ∈N -=(1, 2, 3,...} As its applications, some analytic inequalities are established.展开更多
We establish the monotonicity and convexity properties for several special functions involving the generalized elliptic integrals, and present some new analytic inequalities.
基金the National Natural Science Foundation of China(62273058,U22A2045)the Key Science and Technology Projects of Jilin Province(20200401075GX)the Youth Science and Technology Innovation and Entrepreneurship Outstanding Talents Project of Jilin Province(20230508043RC)。
文摘This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.
文摘Motivated to obtain the second critical point of a nonlinear differential equation, which is expressed by derivatives of convex functional defined on a Banach space, an estimate with is given to see the relation between f<sup>-1</sup>(0) and g<sup>-1</sup>(0). And both the Fréchet differentiability and the continuity of Fréchet derivative of every convex functional defined on an open subset of a Banach space are shown.
基金supported in part by the Shanghai Natural Science Foundation under the Grant 22ZR1407000.
文摘We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization parameters through the wireless network,large-scale training models can create communication bottlenecks,resulting in slower training times.To address this issue,CHOCO-SGD was proposed,which allows compressing information with arbitrary precision without reducing the convergence rate for strongly convex objective functions.Nevertheless,most convex functions are not strongly convex(such as logistic regression or Lasso),which raises the question of whether this algorithm can be applied to non-strongly convex functions.In this paper,we provide the first theoretical analysis of the convergence rate of CHOCO-SGD on non-strongly convex objectives.We derive a sufficient condition,which limits the fidelity of compression,to guarantee convergence.Moreover,our analysis demonstrates that within the fidelity threshold,this algorithm can significantly reduce transmission burden while maintaining the same convergence rate order as its no-compression equivalent.Numerical experiments further validate the theoretical findings by demonstrating that CHOCO-SGD improves communication efficiency and keeps the same convergence rate order simultaneously.And experiments also show that the algorithm fails to converge with low compression fidelity and in time-varying topologies.Overall,our study offers valuable insights into the potential applicability of CHOCO-SGD for non-strongly convex objectives.Additionally,we provide practical guidelines for researchers seeking to utilize this algorithm in real-world scenarios.
文摘In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.
文摘The aim of this paper is to investigate the differentiability(Gateaux differentiabllity and subdifferentiability) of continuous convex functions on locally convex spaces and to study the behaviour of some important results for this research area in locally convex spaces.
文摘Characterizations of differentiability are obtained for continuous convex functions defined on nonempty open convex sets of Banach spaces as a generalization and application of a mumber of mathematicians several years effort, and a characteristic theorem is given for Banach spaces which are (weak) Asplund spaces.
文摘In this paper we derive certain sufficient conditions for starlikeness and convexity of order α of meromorphically multivalent functions in the punctured unit disk.
基金The NSF(11561001)of Chinathe NSF(2014MS0101)of Inner Mongolia Province+1 种基金the Higher School Foundation(NJZY19211)of Inner Mongolia of Chinathe NSF(KJ2018A0839,KJ2018A0833)of Anhui Provincial Department of Education
文摘Denote S to be the class of functions which are analytic,normalized and univalent in the open unit disk U={z:|z|<1}.The important subclasses of S are the class of starlike and convex functions,which we denote by S and C.In this paper,we obtain the third Hankel determinant for the inverse of functions f(z)=z+∞Σn=2 anz^n belonging to S^*and C.
文摘In this paper, the so-called approximate convexity and concavity properties of generalized Groetzsch ring function μa (r) by studying the monotonieity,convexity or concavity of certain composites of μa(r) are obtained.
基金The Doctoral Programs Foundation(20113401110009) of Education Ministry of Chinathe Natural Science Research Project(2012kj11) of Hefei Normal Universitythe NSF(KJ2013A220) of Anhui Province
文摘Schur convexity, Schur geometrical convexity and Schur harmonic convexityof a class of symmetric functions are investigated. As consequences some knowninequalities are generalized. In addition, a class of geometric inequalities involvingn-dimensional simplex in n-dimensional Euclidean space En and several matrix inequalitiesare established to show the applications of our results.
文摘In this paper, we shall establish an inequality for differentiable co-ordinated convex functions on a rectangle from the plane. It is connected with the left side and right side of extended Hermite-Hadamard inequality in two variables. In addition, six other inequalities are derived from it for some refinements. Finally, this paper shows some examples that these inequalities are able to be applied to some special means.
基金Supported by Natural Science Foundation of Gansu Province of China (Grant No.18JR3RM238)Research Foundation of Higher Education of Gansu Province of China (Grant No. 2018A-101)Innovation Ability promotion Project of Higher Education of Gansu Province of China (Grant No. 2019A-117)。
文摘Based on the ordering of fuzzy numbers proposed by Goetschel and Voxman,the representations and some properties of strongly preinvex fuzzy-valued function are defined and obtained, several new concepts of strongly monotonicities fuzzy functions are introduced, the relationship among the strongly preinvex, strongly invex and monotonicities under some suitable and appropriate conditions is established and a necessary condition for strongly pseudoinvex functions is given. As an application, the conditions of local optimal solution and global optimal solution in the mathematical programming problem are discussed.
文摘In this paper, we introduce and study some new classes of biconvex functions with respect to an arbitrary function and a bifunction, which are called the higher order strongly biconvex functions. These functions are nonconvex functions and include the biconvex function, convex functions, and <i>k</i>-convex as special cases. We study some properties of the higher order strongly biconvex functions. Several parallelogram laws for inner product spaces are obtained as novel applications of the higher order strongly biconvex affine functions. It is shown that the minimum of generalized biconvex functions on the <i>k</i>-biconvex sets can be characterized by a class of equilibrium problems, which is called the higher order strongly biequilibrium problems. Using the auxiliary technique involving the Bregman functions, several new inertial type methods for solving the higher order strongly biequilibrium problem are suggested and investigated. Convergence analysis of the proposed methods is considered under suitable conditions. Several important special cases are obtained as novel applications of the derived results. Some open problems are also suggested for future research.
基金supported by NSF Grant of China(11131005,11301400)Hubei Key Laboratory of Applied Mathematics(Hubei University)
文摘In this paper we study integer multiplicity rectifiable currents carried by the subgradient (subdifferential) graphs of semi-convex functions on an n-dimensional convex domain, and show a weak continuity theorem with respect to pointwise convergence for such currents. As an application, the structure theorem of the Lagrangian currents for semi-convex functions is given and the k-Hessian measures are calculated by a different method in terms of currents.
基金Supported by the National Natural Science Foundation of China(11074099)
文摘The definition of geodesic E-quasiconvex functions is established in a geodesic metric space. Meanwhile, the relations of geodesic E-quasiconvex functions, geodesic Econvex functions and geodesic E-almostconvex functions are studied. Furthermore, the notion of E-epigraphs is generalized to geodesic E-epigraphs and a characterization of geodesic E-quasiconvex functions in terms of its geodesic E-epigraphs is considered.
文摘Hanson and Mond have grven sets of necessary and sufficient conditions for optimality in constrained optimization by introducing classes of generalized functions, called type Ⅰ functions. Recently, Bector definded univex functions, a new class of functions that unifies several concepts of generalized convexity. In this paper, additional conditions are attached to the Kuhn Tucker conditions giving a set of conditions which are both necessary and sufficient for optimality in constrained optimization, under appropriate constraint qualifications.
文摘Let Jn(α,A,B),α≥0,-1≤B<A≤1,n≥1,denote the class of functions f(z)=z+∑k=n+1^∞αkZ^k which are analytic in E={z:|z|<1} and satisfy the conditions f(z)f′(z)/z≠0 and (1-α)zf′(z)/f(z)+α(1+zf″(z)/f′(z))-<1+Az/1+Bz for z∈E.In this paper we obtain incluion relations,distortion properties and estimates of |αn+2-λα^2n+1| for the class Jn(α,A,B),where λ is complex.
基金supported by NSFC (60850005)NSF of Zhejiang Province(D7080080, Y7080185, Y607128)
文摘In this article, we prove that the symmetric function Fn(x,r)=∑i1+i2+……in=r(x1(i1x2^i2……xn^in)1/r is Schur harmonic convex for x ∈ R+n and r ∈N -=(1, 2, 3,...} As its applications, some analytic inequalities are established.
基金supported by the Natural Science Foundation of China(11701176,61673169,11301127,11626101,11601485)the Science and Technology Research Program of Zhejiang Educational Committee(Y201635325)
文摘We establish the monotonicity and convexity properties for several special functions involving the generalized elliptic integrals, and present some new analytic inequalities.