How to discover the trustworthy services is a challenge for potential users because of the deficiency of us- age experiences and the information overload of QoE (qual- ity of experience) evaluations from consumers. ...How to discover the trustworthy services is a challenge for potential users because of the deficiency of us- age experiences and the information overload of QoE (qual- ity of experience) evaluations from consumers. Aiming to the limitations of traditional interval numbers in measuring the trustworthiness of service, this paper proposed a novel ser- vice recommendation approach using the interval numbers of four parameters (INF) for potential users. In this approach, a trustworthiness cloud model was established to identify the eigenvalue of INF via backward cloud generator, and a new formula of INF possibility degree based on geometrical anal- ysis was presented to ensure the high calculation precision. In order to select the highly valuable QoE evaluations, the similarity of client-side feature between potential user and consumers was calculated, and the multi-attributes trustwor- thiness values were aggregated into INF by the fuzzy ana- lytic hierarchy process method. On the basis of ranking INF, the sort values of trustworthiness of candidate services were obtained, and the trustworthy services were chosen to recommend to potential user. The experiments based on a real-world dataset showed that it can improve the recommendation accuracy of trustworthy services compared to other approaches, which contributes to solving cold start and information overload problem in service recommendation.展开更多
文摘How to discover the trustworthy services is a challenge for potential users because of the deficiency of us- age experiences and the information overload of QoE (qual- ity of experience) evaluations from consumers. Aiming to the limitations of traditional interval numbers in measuring the trustworthiness of service, this paper proposed a novel ser- vice recommendation approach using the interval numbers of four parameters (INF) for potential users. In this approach, a trustworthiness cloud model was established to identify the eigenvalue of INF via backward cloud generator, and a new formula of INF possibility degree based on geometrical anal- ysis was presented to ensure the high calculation precision. In order to select the highly valuable QoE evaluations, the similarity of client-side feature between potential user and consumers was calculated, and the multi-attributes trustwor- thiness values were aggregated into INF by the fuzzy ana- lytic hierarchy process method. On the basis of ranking INF, the sort values of trustworthiness of candidate services were obtained, and the trustworthy services were chosen to recommend to potential user. The experiments based on a real-world dataset showed that it can improve the recommendation accuracy of trustworthy services compared to other approaches, which contributes to solving cold start and information overload problem in service recommendation.