Taking into account the whole system structure and the component reliability estimation uncertainty, a system reliability estimation method based on probability and statistical theory for distributed monitoring system...Taking into account the whole system structure and the component reliability estimation uncertainty, a system reliability estimation method based on probability and statistical theory for distributed monitoring systems is presented. The variance and confidence intervals of the system reliability estimation are obtained by expressing system reliability as a linear sum of products of higher order moments of component reliability estimates when the number of component or system survivals obeys binomial distribution. The eigenfunction of binomial distribution is used to determine the moments of component reliability estimates, and a symbolic matrix which can facilitate the search of explicit system reliability estimates is proposed. Furthermore, a case of application is used to illustrate the procedure, and with the help of this example, various issues such as the applicability of this estimation model, and measures to improve system reliability of monitoring systems are discussed.展开更多
Traditional econometrics has long employed "points" to measure time series data. In real life situations, however, it suffers the loss of volatility information, since many variables are bounded by intervals in a gi...Traditional econometrics has long employed "points" to measure time series data. In real life situations, however, it suffers the loss of volatility information, since many variables are bounded by intervals in a given period. To address this issue, this paper provides a new methodology for interval time series analysis. The concept of "interval stochastic process" is formally defined as a counterpart of "stochastic process" in point-based econometrics. The authors introduce the concepts of interval stationarity, interval statistics (including interval mean, interval variance, etc.) and propose an interval linear model to investigate the dynamic relationships between interval processes. A new interval-based optimization approach for estimation is proposed, and corresponding evaluation criteria are derived. To demonstrate that the new interval method provides valid results, an empirical example on the sterling-dollar exchange rate is presented.展开更多
基金This project is supported by National Natural Science Foundation of China(No.50335020,No.50205009)Laboratory of Intelligence Manufacturing Technology of Ministry of Education of China(No.J100301).
文摘Taking into account the whole system structure and the component reliability estimation uncertainty, a system reliability estimation method based on probability and statistical theory for distributed monitoring systems is presented. The variance and confidence intervals of the system reliability estimation are obtained by expressing system reliability as a linear sum of products of higher order moments of component reliability estimates when the number of component or system survivals obeys binomial distribution. The eigenfunction of binomial distribution is used to determine the moments of component reliability estimates, and a symbolic matrix which can facilitate the search of explicit system reliability estimates is proposed. Furthermore, a case of application is used to illustrate the procedure, and with the help of this example, various issues such as the applicability of this estimation model, and measures to improve system reliability of monitoring systems are discussed.
基金This work was partially supported by the National Natural Science Foundation of China and Research Granting Committee of Hong Kong
文摘Traditional econometrics has long employed "points" to measure time series data. In real life situations, however, it suffers the loss of volatility information, since many variables are bounded by intervals in a given period. To address this issue, this paper provides a new methodology for interval time series analysis. The concept of "interval stochastic process" is formally defined as a counterpart of "stochastic process" in point-based econometrics. The authors introduce the concepts of interval stationarity, interval statistics (including interval mean, interval variance, etc.) and propose an interval linear model to investigate the dynamic relationships between interval processes. A new interval-based optimization approach for estimation is proposed, and corresponding evaluation criteria are derived. To demonstrate that the new interval method provides valid results, an empirical example on the sterling-dollar exchange rate is presented.