期刊文献+
共找到4,428篇文章
< 1 2 222 >
每页显示 20 50 100
Probabilistic-Ellipsoid Hybrid Reliability Multi-Material Topology Optimization Method Based on Stress Constraint
1
作者 Zibin Mao Qinghai Zhao Liang Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期757-792,共36页
This paper proposes a multi-material topology optimization method based on the hybrid reliability of the probability-ellipsoid model with stress constraint for the stochastic uncertainty and epistemic uncertainty of m... This paper proposes a multi-material topology optimization method based on the hybrid reliability of the probability-ellipsoid model with stress constraint for the stochastic uncertainty and epistemic uncertainty of mechanical loads in optimization design.The probabilistic model is combined with the ellipsoidal model to describe the uncertainty of mechanical loads.The topology optimization formula is combined with the ordered solid isotropic material with penalization(ordered-SIMP)multi-material interpolation model.The stresses of all elements are integrated into a global stress measurement that approximates the maximum stress using the normalized p-norm function.Furthermore,the sequential optimization and reliability assessment(SORA)is applied to transform the original uncertainty optimization problem into an equivalent deterministic topology optimization(DTO)problem.Stochastic response surface and sparse grid technique are combined with SORA to get accurate information on the most probable failure point(MPP).In each cycle,the equivalent topology optimization formula is updated according to the MPP information obtained in the previous cycle.The adjoint variable method is used for deriving the sensitivity of the stress constraint and the moving asymptote method(MMA)is used to update design variables.Finally,the validity and feasibility of the method are verified by the numerical example of L-shape beam design,T-shape structure design,steering knuckle,and 3D T-shaped beam. 展开更多
关键词 Stress constraint probabilistic-ellipsoid hybrid topology optimization reliability analysis multi-material design
下载PDF
Hybrid Optimization Algorithm for Handwritten Document Enhancement
2
作者 Shu-Chuan Chu Xiaomeng Yang +2 位作者 Li Zhang Václav Snášel Jeng-Shyang Pan 《Computers, Materials & Continua》 SCIE EI 2024年第3期3763-3786,共24页
The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study intro... The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study introduces a hybrid optimization algorithm, named the adaptive inertia weight whale optimization algorithm and gannet optimization algorithm (AIWGOA), which addresses challenges in enhancing handwritten documents. The hybrid strategy integrates the strengths of both algorithms, significantly enhancing their capabilities, whereas the adaptive parameter strategy mitigates the need for manual parameter setting. By amalgamating the hybrid strategy and parameter-adaptive approach, the Gannet Optimization Algorithm was refined to yield the AIWGOA. Through a performance analysis of the CEC2013 benchmark, the AIWGOA demonstrates notable advantages across various metrics. Subsequently, an evaluation index was employed to assess the enhanced handwritten documents and images, affirming the superior practical application of the AIWGOA compared with other algorithms. 展开更多
关键词 Metaheuristic algorithm gannet optimization algorithm hybrid algorithm handwritten document enhancement
下载PDF
A Hybrid Parallel Strategy for Isogeometric Topology Optimization via CPU/GPU Heterogeneous Computing
3
作者 Zhaohui Xia Baichuan Gao +3 位作者 Chen Yu Haotian Han Haobo Zhang Shuting Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1103-1137,共35页
This paper aims to solve large-scale and complex isogeometric topology optimization problems that consumesignificant computational resources. A novel isogeometric topology optimization method with a hybrid parallelstr... This paper aims to solve large-scale and complex isogeometric topology optimization problems that consumesignificant computational resources. A novel isogeometric topology optimization method with a hybrid parallelstrategy of CPU/GPU is proposed, while the hybrid parallel strategies for stiffness matrix assembly, equationsolving, sensitivity analysis, and design variable update are discussed in detail. To ensure the high efficiency ofCPU/GPU computing, a workload balancing strategy is presented for optimally distributing the workload betweenCPU and GPU. To illustrate the advantages of the proposedmethod, three benchmark examples are tested to verifythe hybrid parallel strategy in this paper. The results show that the efficiency of the hybrid method is faster thanserial CPU and parallel GPU, while the speedups can be up to two orders of magnitude. 展开更多
关键词 Topology optimization high-efficiency isogeometric analysis CPU/GPU parallel computing hybrid OpenMPCUDA
下载PDF
Double-Layer-Optimizing Method of Hybrid Energy Storage Microgrid Based on Improved Grey Wolf Optimization
4
作者 Xianjing Zhong Xianbo Sun Yuhan Wu 《Computers, Materials & Continua》 SCIE EI 2023年第8期1599-1619,共21页
To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation,a double-layer optimizing confi... To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation,a double-layer optimizing configuration method of hybrid energy storage microgrid based on improved grey wolf optimization(IGWO)is proposed.Firstly,building a microgrid system containing a wind-solar power station and electric-hydrogen coupling hybrid energy storage system.Secondly,the minimum comprehensive cost of the construction and operation of the microgrid is taken as the outer objective function,and the minimum peak-to-valley of the microgrid’s daily output is taken as the inner objective function.By iterating through the outer and inner layers,the system improves operational stability while achieving economic configuration.Then,using the energy-self-smoothness of the microgrid as the evaluation index,a double-layer optimizing configuration method of the microgrid is constructed.Finally,to improve the disadvantages of grey wolf optimization(GWO),such as slow convergence in the later period and easy falling into local optima,by introducing the convergence factor nonlinear adjustment strategy and Cauchy mutation operator,an IGWO with excellent global performance is proposed.After testing with the typical test functions,the superiority of IGWO is verified.Next,using IGWO to solve the double-layer model.The case analysis shows that compared to GWO and particle swarm optimization(PSO),the IGWO reduced the comprehensive cost by 15.6%and 18.8%,respectively.Therefore,the proposed double-layer optimizationmethod of capacity configuration ofmicrogrid with wind-solar-hybrid energy storage based on IGWO could effectively improve the independence and stability of the microgrid and significantly reduce the comprehensive cost. 展开更多
关键词 Wind-solar microgrid hybrid energy storage optimization configuration double-layer optimization model IGWO
下载PDF
Many-Objective Optimization-Based Task Scheduling in Hybrid Cloud Environments
5
作者 Mengkai Zhao Zhixia Zhang +2 位作者 Tian Fan Wanwan Guo Zhihua Cui 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2425-2450,共26页
Due to the security and scalability features of hybrid cloud architecture,it can bettermeet the diverse requirements of users for cloud services.And a reasonable resource allocation solution is the key to adequately u... Due to the security and scalability features of hybrid cloud architecture,it can bettermeet the diverse requirements of users for cloud services.And a reasonable resource allocation solution is the key to adequately utilize the hybrid cloud.However,most previous studies have not comprehensively optimized the performance of hybrid cloud task scheduling,even ignoring the conflicts between its security privacy features and other requirements.Based on the above problems,a many-objective hybrid cloud task scheduling optimization model(HCTSO)is constructed combining risk rate,resource utilization,total cost,and task completion time.Meanwhile,an opposition-based learning knee point-driven many-objective evolutionary algorithm(OBL-KnEA)is proposed to improve the performance of model solving.The algorithm uses opposition-based learning to generate initial populations for faster convergence.Furthermore,a perturbation-based multipoint crossover operator and a dynamic range mutation operator are designed to extend the search range.By comparing the experiments with other excellent algorithms on HCTSO,OBL-KnEA achieves excellent results in terms of evaluation metrics,initial populations,and model optimization effects. 展开更多
关键词 hybrid cloud environment task scheduling many-objective optimization model many-objective optimization algorithm
下载PDF
Hybrid Algorithm-Driven Smart Logistics Optimization in IoT-Based Cyber-Physical Systems
6
作者 Abdulwahab Ali Almazroi Nasir Ayub 《Computers, Materials & Continua》 SCIE EI 2023年第12期3921-3942,共22页
Effectively managing complex logistics data is essential for development sustainability and growth,especially in optimizing distribution routes.This article addresses the limitations of current logistics path optimiza... Effectively managing complex logistics data is essential for development sustainability and growth,especially in optimizing distribution routes.This article addresses the limitations of current logistics path optimization methods,such as inefficiencies and high operational costs.To overcome these drawbacks,we introduce the Hybrid Firefly-Spotted Hyena Optimization(HFSHO)algorithm,a novel approach that combines the rapid exploration and global search abilities of the Firefly Algorithm(FO)with the localized search and region-exploitation skills of the Spotted Hyena Optimization Algorithm(SHO).HFSHO aims to improve logistics path optimization and reduce operational costs.The algorithm’s effectiveness is systematically assessed through rigorous comparative analyses with established algorithms like the Ant Colony Algorithm(ACO),Cuckoo Search Algorithm(CSA)and Jaya Algo-rithm(JA).The evaluation also employs benchmarking methodologies using standardized function sets covering diverse objective functions,including Schwefel’s,Rastrigin,Ackley,Sphere and the ZDT and DTLZ Function suite.HFSHO outperforms these algorithms,achieving a minimum path distance of 546 units,highlighting its prowess in logistics path optimization.This comprehensive evaluation authenticates HFSHO’s exceptional performance across various logistic optimization scenarios.These findings emphasize the critical significance of selecting an appropriate algorithm for logistics path navigation,with HFSHO emerging as an efficient choice.Through the synergistic use of FO and SHO,HFSHO achieves a 15%improvement in convergence,heightened operational efficiency and substantial cost reductions in logistics operations.It presents a promising solution for optimizing logistics paths,offering logistics planners and decision-makers valuable insights and contributing substantively to sustainable sectoral growth. 展开更多
关键词 hybrid optimization internet of things intelligent transport system optimal path finding smart logistics traffic congestion supply chain
下载PDF
Bottom hole pressure prediction based on hybrid neural networks and Bayesian optimization
7
作者 Chengkai Zhang Rui Zhang +4 位作者 Zhaopeng Zhu Xianzhi Song Yinao Su Gensheng Li Liang Han 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3712-3722,共11页
Many scholars have focused on applying machine learning models in bottom hole pressure (BHP) prediction. However, the complex and uncertain conditions in deep wells make it difficult to capture spatial and temporal co... Many scholars have focused on applying machine learning models in bottom hole pressure (BHP) prediction. However, the complex and uncertain conditions in deep wells make it difficult to capture spatial and temporal correlations of measurement while drilling (MWD) data with traditional intelligent models. In this work, we develop a novel hybrid neural network, which integrates the Convolution Neural Network (CNN) and the Gate Recurrent Unit (GRU) for predicting BHP fluctuations more accurately. The CNN structure is used to analyze spatial local dependency patterns and the GRU structure is used to discover depth variation trends of MWD data. To further improve the prediction accuracy, we explore two types of GRU-based structure: skip-GRU and attention-GRU, which can capture more long-term potential periodic correlation in drilling data. Then, the different model structures tuned by the Bayesian optimization (BO) algorithm are compared and analyzed. Results indicate that the hybrid models can extract spatial-temporal information of data effectively and predict more accurately than random forests, extreme gradient boosting, back propagation neural network, CNN and GRU. The CNN-attention-GRU model with BO algorithm shows great superiority in prediction accuracy and robustness due to the hybrid network structure and attention mechanism, having the lowest mean absolute percentage error of 0.025%. This study provides a reference for solving the problem of extracting spatial and temporal characteristics and guidance for managed pressure drilling in complex formations. 展开更多
关键词 Bottom hole pressure Spatial-temporal information Improved GRU hybrid neural networks Bayesian optimization
下载PDF
Hyperparameter Optimization for Capsule Network Based Modified Hybrid Rice Optimization Algorithm
8
作者 Zhiwei Ye Ziqian Fang +4 位作者 Zhina Song Haigang Sui Chunyan Yan Wen Zhou Mingwei Wang 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期2019-2035,共17页
Hyperparameters play a vital impact in the performance of most machine learning algorithms.It is a challenge for traditional methods to con-figure hyperparameters of the capsule network to obtain high-performance manu... Hyperparameters play a vital impact in the performance of most machine learning algorithms.It is a challenge for traditional methods to con-figure hyperparameters of the capsule network to obtain high-performance manually.Some swarm intelligence or evolutionary computation algorithms have been effectively employed to seek optimal hyperparameters as a com-binatorial optimization problem.However,these algorithms are prone to get trapped in the local optimal solution as random search strategies are adopted.The inspiration for the hybrid rice optimization(HRO)algorithm is from the breeding technology of three-line hybrid rice in China,which has the advantages of easy implementation,less parameters and fast convergence.In the paper,genetic search is combined with the hybrid rice optimization algorithm(GHRO)and employed to obtain the optimal hyperparameter of the capsule network automatically,that is,a probability search technique and a hybridization strategy belong with the primary HRO.Thirteen benchmark functions are used to evaluate the performance of GHRO.Furthermore,the MNIST,Chest X-Ray(pneumonia),and Chest X-Ray(COVID-19&pneumonia)datasets are also utilized to evaluate the capsule network learnt by GHRO.The experimental results show that GHRO is an effective method for optimizing the hyperparameters of the capsule network,which is able to boost the performance of the capsule network on image classification. 展开更多
关键词 Hyperparameter optimization hybrid rice optimization algorithm genetic algorithm capsule network image classification
下载PDF
An Efficient Hybrid Optimization for Skin Cancer Detection Using PNN Classifier
9
作者 J.Jaculin Femil T.Jaya 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期2919-2934,共16页
The necessity of on-time cancer detection is extremely high in the recent days as it becomes a threat to human life.The skin cancer is considered as one of the dangerous diseases among other types of cancer since it c... The necessity of on-time cancer detection is extremely high in the recent days as it becomes a threat to human life.The skin cancer is considered as one of the dangerous diseases among other types of cancer since it causes severe health impacts on human beings and hence it is highly mandatory to detect the skin cancer in the early stage for providing adequate treatment.Therefore,an effective image processing approach is employed in this present study for the accurate detection of skin cancer.Initially,the dermoscopy images of skin lesions are retrieved and processed by eliminating the noises with the assistance of Gaborfilter.Then,the pre-processed dermoscopy image is segmented into multiple regions by implementing cascaded Fuzzy C-Means(FCM)algorithm,which involves in improving the reliability of cancer detection.The A Gabor Response Co-occurrence Matrix(GRCM)is used to extract melanoma parameters in an effi-cient manner.A hybrid Particle Swarm Optimization(PSO)-Whale Optimization is then utilized for efficiently optimizing the extracted features.Finally,the fea-tures are significantly classified with the assistance of Probabilistic Neural Net-work(PNN)classifier for classifying the stages of skin lesion in an optimal manner.The whole work is stimulated in MATLAB and the attained outcomes have proved that the introduced approach delivers optimal results with maximal accuracy of 97.83%. 展开更多
关键词 Gaborfilter GRCM hybrid PSO-whale optimization algorithm PNN classifier
下载PDF
Hybrid Architecture and Beamforming Optimization for Millimeter Wave Systems
10
作者 TANG Yuanqi ZHANG Huimin +2 位作者 ZHENG Zheng LI Ping ZHU Yu 《ZTE Communications》 2023年第3期93-104,共12页
Hybrid beamforming(HBF)has become an attractive and important technology in massive multiple-input multiple-output(MIMO)millimeter-wave(mmWave)systems.There are different hybrid architectures in HBF depending on diffe... Hybrid beamforming(HBF)has become an attractive and important technology in massive multiple-input multiple-output(MIMO)millimeter-wave(mmWave)systems.There are different hybrid architectures in HBF depending on different connection strategies of the phase shifter network between antennas and radio frequency chains.This paper investigates HBF optimization with different hybrid architectures in broadband point-to-point mmWave MIMO systems.The joint hybrid architecture and beamforming optimization problem is divided into two sub-problems.First,we transform the spectral efficiency maximization problem into an equivalent weighted mean squared error minimization problem,and propose an algorithm based on the manifold optimization method for the hybrid beamformer with a fixed hybrid architecture.The overlapped subarray architecture which balances well between hardware costs and system performance is investigated.We further propose an algorithm to dynamically partition antenna subarrays and combine it with the HBF optimization algorithm.Simulation results are presented to demonstrate the performance improvement of our proposed algorithms. 展开更多
关键词 hybrid beamforming hybrid architecture weighted mean square error manifold optimization dynamic subarrays
下载PDF
Hybrid Power Bank Deployment Model for Energy Supply Coverage Optimization in Industrial Wireless Sensor Network
11
作者 Hang Yang Xunbo Li Witold Pedrycz 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1531-1551,共21页
Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monito... Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monitoring coverage,this research focuses on the power banks’energy supply coverage.The study of 2-D and 3-D spaces is typical in IWSN,with the realistic environment being more complex with obstacles(i.e.,machines).A 3-D surface is the field of interest(FOI)in this work with the established hybrid power bank deployment model for the energy supply COP optimization of IWSN.The hybrid power bank deployment model is highly adaptive and flexible for new or existing plants already using the IWSN system.The model improves the power supply to a more considerable extent with the least number of power bank deployments.The main innovation in this work is the utilization of a more practical surface model with obstacles and training while improving the convergence speed and quality of the heuristic algorithm.An overall probabilistic coverage rate analysis of every point on the FOI is provided,not limiting the scope to target points or areas.Bresenham’s algorithm is extended from 2-D to 3-D surface to enhance the probabilistic covering model for coverage measurement.A dynamic search strategy(DSS)is proposed to modify the artificial bee colony(ABC)and balance the exploration and exploitation ability for better convergence toward eliminating NP-hard deployment problems.Further,the cellular automata(CA)is utilized to enhance the convergence speed.The case study based on two typical FOI in the IWSN shows that the CA scheme effectively speeds up the optimization process.Comparative experiments are conducted on four benchmark functions to validate the effectiveness of the proposed method.The experimental results show that the proposed algorithm outperforms the ABC and gbest-guided ABC(GABC)algorithms.The results show that the proposed energy coverage optimization method based on the hybrid power bank deployment model generates more accurate results than the results obtained by similar algorithms(i.e.,ABC,GABC).The proposed model is,therefore,effective and efficient for optimization in the IWSN. 展开更多
关键词 Industrial wireless sensor network hybrid power bank deployment model:energy supply coverage optimization artificial bee colony algorithm radio frequency numerical function optimization
下载PDF
Modeling and Control of Parallel Hybrid Electric Vehicle Using Sea-Lion Optimization
12
作者 J.Leon Bosco Raj M.Marsaline Beno 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1441-1454,共14页
This paper develops a parallel hybrid electric vehicle(PHEV)propor-tional integral controller with driving cycle.To improve fuel efficiency and reduce hazardous emissions in hybrid electric vehicles(HEVs)combine an ele... This paper develops a parallel hybrid electric vehicle(PHEV)propor-tional integral controller with driving cycle.To improve fuel efficiency and reduce hazardous emissions in hybrid electric vehicles(HEVs)combine an electric motor(EM),a battery and an internal combustion engine(ICE).The electric motor assists the engine when accelerating,driving longer highways or climbing hills.This enables the use of a smaller,more efficient engine.It also makes use of the concept of regenerative braking to maximize energy efficiency.In a Hybrid Electric Vehicle(HEV),energy dissipated while braking is utilized to charge the battery.The proportional integral controller was used in this paper to analyze engine,motor performance and the New European Driving Cycle(NEDC)was used in the vehicle driving test using Matlab/Simulink.The proportional integral controllers were designed to track the desired vehicle speed and manage the vehi-cle’s energyflow.The Sea Lion Optimization(SLnO)methods were created to reduce fuel consumption in a parallel hybrid electric vehicle and the results were obtained for the New European Driving Cycle. 展开更多
关键词 hybrid electric vehicle(HEV) proportional integral controller parallel HEV fuel efficiency new European driving cycle(NEDC) sea lion optimization(SLnO)
下载PDF
Hybrid model based on K-means++ algorithm, optimal similar day approach, and long short-term memory neural network for short-term photovoltaic power prediction 被引量:1
13
作者 Ruxue Bai Yuetao Shi +1 位作者 Meng Yue Xiaonan Du 《Global Energy Interconnection》 EI CAS CSCD 2023年第2期184-196,共13页
Photovoltaic(PV) power generation is characterized by randomness and intermittency due to weather changes.Consequently, large-scale PV power connections to the grid can threaten the stable operation of the power syste... Photovoltaic(PV) power generation is characterized by randomness and intermittency due to weather changes.Consequently, large-scale PV power connections to the grid can threaten the stable operation of the power system. An effective method to resolve this problem is to accurately predict PV power. In this study, an innovative short-term hybrid prediction model(i.e., HKSL) of PV power is established. The model combines K-means++, optimal similar day approach,and long short-term memory(LSTM) network. Historical power data and meteorological factors are utilized. This model searches for the best similar day based on the results of classifying weather types. Then, the data of similar day are inputted into the LSTM network to predict PV power. The validity of the hybrid model is verified based on the datasets from a PV power station in Shandong Province, China. Four evaluation indices, mean absolute error, root mean square error(RMSE),normalized RMSE, and mean absolute deviation, are employed to assess the performance of the HKSL model. The RMSE of the proposed model compared with those of Elman, LSTM, HSE(hybrid model combining similar day approach and Elman), HSL(hybrid model combining similar day approach and LSTM), and HKSE(hybrid model combining K-means++,similar day approach, and LSTM) decreases by 66.73%, 70.22%, 65.59%, 70.51%, and 18.40%, respectively. This proves the reliability and excellent performance of the proposed hybrid model in predicting power. 展开更多
关键词 PV power prediction hybrid model K-means++ optimal similar day LSTM
下载PDF
Hybrid optimization algorithm based on chaos,cloud and particle swarm optimization algorithm 被引量:29
14
作者 Mingwei Li Haigui Kang +1 位作者 Pengfei Zhou Weichiang Hong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第2期324-334,共11页
As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid ... As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.While the PSO algorithm evolves a certain of generations,this algorithm applies the cat mapping to implement global disturbance of the poorer individuals,and employs the cloud model to execute local search of the better individuals;accordingly,the obtained best individuals form a new swarm.For this new swarm,the evolution operation is maintained with the PSO algorithm,using the parameter of pop distr to balance the global and local search capacity of the algorithm,as well as,adopting the parameter of mix gen to control mixing times of the algorithm.The comparative analysis is carried out on the basis of 4 functions and other algorithms.It indicates that this algorithm shows faster convergent speed and better solving precision for solving functions particularly those high-dimensional multi-modal functions.Finally,the suggested values are proposed for parameters pop distr and mix gen applied to different dimension functions via the comparative analysis of parameters. 展开更多
关键词 particle swarm optimization(PSO) chaos theory cloud model hybrid optimization
下载PDF
Series-parallel Hybrid Vehicle Control Strategy Design and Optimization Using Real-valued Genetic Algorithm 被引量:14
15
作者 XIONG Weiwei YIN Chengliang ZHANG Yong ZHANG Jianlong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第6期862-868,共7页
Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been... Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been revealed because of its complex co nstruction and control strategy. In this paper, a series-parallel hybrid electric bus as well as its control strategy is revealed, and a control parameter optimization approach using the real-valued genetic algorithm is proposed. The optimization objective is to minimize the fuel consumption while sustain the battery state of charge, a tangent penalty function of state of charge(SOC) is embodied in the objective function to recast this multi-objective nonlinear optimization problem as a single linear optimization problem. For this strategy, the vehicle operating mode is switched based on the vehicle speed, and an "optimal line" typed strategy is designed for the parallel control. The optimization parameters include the speed threshold for mode switching, the highest state of charge allowed, the lowest state of charge allowed and the scale factor of the engine optimal torque to the engine maximum torque at a rotational speed. They are optimized through numerical experiments based on real-value genes, arithmetic crossover and mutation operators. The hybrid bus has been evaluated at the Chinese Transit Bus City Driving Cycle via road test, in which a control area network-based monitor system was used to trace the driving schedule. The test result shows that this approach is feasible for the control parameter optimization. This approach can be applied to not only the novel construction presented in this paper, but also other types of hybrid electric vehicles. 展开更多
关键词 series-parallel hybrid electric vehicle control strategy DESIGN optimization real-valued genetic algorithm
下载PDF
Power-balancing Instantaneous Optimization Energy Management for a Novel Series-parallel Hybrid Electric Bus 被引量:18
16
作者 SUN Dongye LIN Xinyou +1 位作者 QIN Datong DENG Tao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第6期1161-1170,共10页
Energy management(EM) is a core technique of hybrid electric bus(HEB) in order to advance fuel economy performance optimization and is unique for the corresponding configuration. There are existing algorithms of c... Energy management(EM) is a core technique of hybrid electric bus(HEB) in order to advance fuel economy performance optimization and is unique for the corresponding configuration. There are existing algorithms of control strategy seldom take battery power management into account with international combustion engine power management. In this paper, a type of power-balancing instantaneous optimization(PBIO) energy management control strategy is proposed for a novel series-parallel hybrid electric bus. According to the characteristic of the novel series-parallel architecture, the switching boundary condition between series and parallel mode as well as the control rules of the power-balancing strategy are developed. The equivalent fuel model of battery is implemented and combined with the fuel of engine to constitute the objective function which is to minimize the fuel consumption at each sampled time and to coordinate the power distribution in real-time between the engine and battery. To validate the proposed strategy effective and reasonable, a forward model is built based on Matlab/Simulink for the simulation and the dSPACE autobox is applied to act as a controller for hardware in-the-loop integrated with bench test. Both the results of simulation and hardware-in-the-loop demonstrate that the proposed strategy not only enable to sustain the battery SOC within its operational range and keep the engine operation point locating the peak efficiency region, but also the fuel economy of series-parallel hybrid electric bus(SPHEB) dramatically advanced up to 30.73% via comparing with the prototype bus and a similar improvement for PBIO strategy relative to rule-based strategy, the reduction of fuel consumption is up to 12.38%. The proposed research ensures the algorithm of PBIO is real-time applicability, improves the efficiency of SPHEB system, as well as suite to complicated configuration perfectly. 展开更多
关键词 city bus hybrid electric powertrain instantaneous optimization energy management control strategy
下载PDF
Synthetical Efficiency-based Optimization for the Power Distribution of Power-split Hybrid Electric Vehicles 被引量:12
17
作者 WANG Weida HAN Lijin +2 位作者 XIANG Changle MA Yue LIU Hui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第1期58-68,共11页
Now the optimization strategies for power distribution are researched widely, and most of them are aiming to the optimal fuel economy and the driving cycle must be preknown. Thus if the actual driving condition deviat... Now the optimization strategies for power distribution are researched widely, and most of them are aiming to the optimal fuel economy and the driving cycle must be preknown. Thus if the actual driving condition deviates from the scheduled driving cycle, the effect of optimal results will be declined greatly. Therefore, the instantaneous optimization strategy carried out on-line is studied in this paper. The power split path and the transmission efficiency are analyzed based on a special power-split scheme and the efficiency models of the power transmitting components are established. The synthetical efficiency optimization model is established for enhancing the transmission efficiency and the fuel economy. The identification of the synthetical efficiency as the optimization objective and the constrain group are discussed emphatically. The optimization is calculated by the adaptive simulated annealing (ASA) algorithm and realized on-line by the radial basis function (RBF)-based similar models. The optimization for power distribution of the hybrid vehicle in an actual driving condition is carried out and the road test results are presented. The test results indicate that the synthetical efficiency optimization method can enhance the transmission efficiency and the fuel economy of the power-split hybrid electric vehicle (HEV) observably. Compared to the rules-based strategy the optimization strategy is optimal and achieves the approximate global optimization solution for the power distribution. The synthetical efficiency optimization solved by ASA algorithm can give attentions to both optimization quality and calculation efficiency, thus it has good application foreground for the power distribution of power-split HEV. 展开更多
关键词 hybrid electric vehicles power-split synthetical efficiency-based optimization power distribution road test
下载PDF
OPTIMIZATION APPROACH FOR HYBRID ELECTRIC VEHICLE POWERTRAIN DESIGN 被引量:9
18
作者 ZhuZhengli ZhangJianwu YinChengliang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第1期30-36,共7页
According to bench test results of fuel economy and engine emission for thereal power-train system of EQ7200HEV car. a 3-D performance map oriented quasi-linear model isdeveloped for the configuration of the powertrai... According to bench test results of fuel economy and engine emission for thereal power-train system of EQ7200HEV car. a 3-D performance map oriented quasi-linear model isdeveloped for the configuration of the powertrain components such as internal combustion engine,traction electric motor, transmission, main retarder and energy storage unit. A genetic algorithmbased on optimization procedure is proposed and applied for parametric optimization of the keycomponents by consideration of requirements of some driving cycles. Through comparison of numericalresults obtained by the genetic algorithm with those by traditional optimization methods, it isshown that the present approach is quite effective and efficient in emission reduction and fueleconomy for the design of the hybrid electric car powertrain. 展开更多
关键词 hybrid electric vehicle(HEV) POWERTRAIN Components sizing optimization Genetic algorithm
下载PDF
Parameter selection of support vector regression based on hybrid optimization algorithm and its application 被引量:9
19
作者 Xin WANG Chunhua YANG +1 位作者 Bin QIN Weihua GUI 《控制理论与应用(英文版)》 EI 2005年第4期371-376,共6页
Choosing optimal parameters for support vector regression (SVR) is an important step in SVR. design, which strongly affects the pefformance of SVR. In this paper, based on the analysis of influence of SVR parameters... Choosing optimal parameters for support vector regression (SVR) is an important step in SVR. design, which strongly affects the pefformance of SVR. In this paper, based on the analysis of influence of SVR parameters on generalization error, a new approach with two steps is proposed for selecting SVR parameters, First the kernel function and SVM parameters are optimized roughly through genetic algorithm, then the kernel parameter is finely adjusted by local linear search, This approach has been successfully applied to the prediction model of the sulfur content in hot metal. The experiment results show that the proposed approach can yield better generalization performance of SVR than other methods, 展开更多
关键词 Support vector regression Parameters tuning hybrid optimization Genetic algorithm(GA)
下载PDF
A Multi-Objective Hybrid Genetic Based Optimization for External Beam Radiation 被引量:3
20
作者 李国丽 宋钢 +2 位作者 吴宜灿 张建 王群京 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第2期234-236,共3页
A multi-objective hybrid genetic based optimization algorithm is proposed according to the multi-objective property of inverse planning. It is based on hybrid adaptive genetic algorithm which combines the simulated an... A multi-objective hybrid genetic based optimization algorithm is proposed according to the multi-objective property of inverse planning. It is based on hybrid adaptive genetic algorithm which combines the simulated annealing, uses adaptive crossover and mutation, and adopts niched tournament selection. The result of the test calculation demonstrates that an excellent converging speed can be achieved using this approach. 展开更多
关键词 inverse planning multi-objective optimization genetic algorithm hybrid
下载PDF
上一页 1 2 222 下一页 到第
使用帮助 返回顶部