Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and stra...Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and strategies to assist them in realizing sustainable development.Because of the speculative character of human opinions,supplier selection frequently includes unreliable data,and the interval-valued Pythagorean fuzzy soft set(IVPFSS)provides an exceptional capacity to cope with excessive fuzziness,inconsistency,and inexactness through the decision-making procedure.The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers(IVPFSNs)and create two interaction operators-the intervalvalued Pythagorean fuzzy soft interaction weighted average(IVPFSIWA)and the interval-valued Pythagorean fuzzy soft interaction weighted geometric(IVPFSIWG)operators,and analyze their properties.These operators are highly advantageous in addressing uncertain problems by considering membership and non-membership values within intervals,providing a superior solution to other methods.Moreover,specialist judgments were calculated by the MCGDM technique,supporting the use of interaction AOs to regulate the interdependence and fundamental partiality of green supplier assessment aspects.Lastly,a statistical clarification of the planned method for green supplier selection is presented.展开更多
Experts use Pythagorean fuzzy hypersoft sets(PFHSS)in their investigations to resolve the indeterminate and imprecise information in the decision-making process.Aggregation operators(AOs)perform a leading role in perc...Experts use Pythagorean fuzzy hypersoft sets(PFHSS)in their investigations to resolve the indeterminate and imprecise information in the decision-making process.Aggregation operators(AOs)perform a leading role in perceptivity among two circulations of prospect and pull out concerns from that perception.In this paper,we extend the concept of PFHSS to interval-valued PFHSS(IVPFHSS),which is the generalized form of intervalvalued intuitionistic fuzzy soft set.The IVPFHSS competently deals with uncertain and ambagious information compared to the existing interval-valued Pythagorean fuzzy soft set.It is the most potent method for amplifying fuzzy data in the decision-making(DM)practice.Some operational laws for IVPFHSS have been proposed.Based on offered operational laws,two inventive AOs have been established:interval-valued Pythagorean fuzzy hypersoft weighted average(IVPFHSWA)and interval-valued Pythagorean fuzzy hypersoft weighted geometric(IVPFHSWG)operators with their essential properties.Multi-criteria group decision-making(MCGDM)shows an active part in contracts with the difficulties in industrial enterprise for material selection.But,the prevalent MCGDM approaches consistently carry irreconcilable consequences.Based on the anticipated AOs,a robust MCGDMtechnique is deliberate formaterial selection in industrial enterprises to accommodate this shortcoming.A real-world application of the projectedMCGDMmethod for material selection(MS)of cryogenic storing vessels is presented.The impacts show that the intended model is more effective and reliable in handling imprecise data based on IVPFHSS.展开更多
The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the normalized H...The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the normalized Hamming distance, the weighted Hamming distance, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance, etc. Then, by combining the Hausdorff metric with the Hamming distance, the Euclidean distance and their weighted versions, two other similarity measures between IVIFSs, i. e., the weighted Hamming distance based on the Hausdorff metric and the weighted Euclidean distance based on the Hausdorff metric, are defined, and then some of their properties are studied. Finally, based on these distance measures, some similarity measures between IVIFSs are defined, and the similarity measures are applied to pattern recognitions with interval-valued intuitionistic fuzzy information.展开更多
The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy imp...The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy implications by means of a type of impli- cations and a parameter on the unit interval, then uses them to establish fully implicational reasoning methods for interval-valued fuzzy modus ponens (IFMP) and interval-valued fuzzy modus tel- lens (IFMT) problems. At the same time the reversibility properties of these methods are analyzed and the reversible conditions are given. It is shown that the existing unified forms of α-triple I (the abbreviation of triple implications) methods for FMP and FMT can be seen as the particular cases of our methods for IFMP and IFMT.展开更多
The notion of the interval-valued intuitionistic fuzzy set (IVIFS) is a generalization of that of the Atanassov's intuitionistic fuzzy set. The fundamental characteristic of IVIFS is that the values of its membersh...The notion of the interval-valued intuitionistic fuzzy set (IVIFS) is a generalization of that of the Atanassov's intuitionistic fuzzy set. The fundamental characteristic of IVIFS is that the values of its membership function and non-membership function are intervals rather than exact numbers. There are various averaging operators defined for IVlFSs. These operators are not monotone with respect to the total order of IVIFS, which is undesirable. This paper shows how such averaging operators can be represented by using additive generators of the product triangular norm, which simplifies and extends the existing constructions. Moreover, two new aggregation operators based on the t.ukasiewicz triangular norm are proposed, which are monotone with respect to the total order of IVIFS. Finally, an application of the interval-valued intuitionistic fuzzy weighted averaging operator is given to multiple criteria decision making.展开更多
Interval-valued Pythagorean fuzzy soft set(IVPFSS)is a generalization of the interval-valued intuitionistic fuzzy soft set(IVIFSS)and interval-valued Pythagorean fuzzy set(IVPFS).The IVPFSS handled more uncertainty co...Interval-valued Pythagorean fuzzy soft set(IVPFSS)is a generalization of the interval-valued intuitionistic fuzzy soft set(IVIFSS)and interval-valued Pythagorean fuzzy set(IVPFS).The IVPFSS handled more uncertainty comparative to IVIFSS;it is the most significant technique for explaining fuzzy information in the decision-making process.In this work,some novel operational laws for IVPFSS have been proposed.Based on presented operational laws,two innovative aggregation operators(AOs)have been developed such as interval-valued Pythagorean fuzzy soft weighted average(IVPFSWA)and interval-valued Pythagorean fuzzy soft weighted geometric(IVPFSWG)operators with their fundamental properties.A multi-attribute group decision-making(MAGDM)approach has been established utilizing our developed operators.A numerical example has been presented to ensure the validity of the proposed MAGDM technique.Finally,comparative studies have been given between the proposed approach and some existing studies.The obtained results through comparative studies show that the proposed technique is more credible and reliable than existing approaches.展开更多
As the quantity of garbage created every day rises,solid waste management has become the world’s most important issue.As a result,improper solid waste disposal and major sanitary issues develop,which are only detecte...As the quantity of garbage created every day rises,solid waste management has become the world’s most important issue.As a result,improper solid waste disposal and major sanitary issues develop,which are only detected after they have become dangerous.Due to the system’s lockdown during the COVID-19 pandemic,this scenario became much more uncertain.We are at the stage to develop and execute effective waste management procedures,as well as long-term policies and forward-thinking programmes that can work even in the most adverse of scenarios.We incorporate major solid waste(organic and inorganic solid wastes)approaches that actually perform well in normal cases by reducing waste and environmental disasters;however,in such an uncertain scenario like the COVID-19 pandemic,the project automatically allows for a larger number of criteria,all of which are dealt with using fuzzy Multi-Criteria Group Decision Making(MCGDM)methods.The ELECTRE Ⅲ(ELimination Et Choice Translating REality-Ⅲ)approach,which is a novel decision-making strategy for determining the best way to dispose and reduce garbage by combining traditional ELECTRE Ⅲ with an interval-valued q-rung orthopair fuzzy set(IVq-ROFS),is described in detail in this article.To confirm the efficacy of the recommended model,a numerical explanation is provided,as well as sensitivity and comparative analyses.Obviously,the findings encourage decision-makers in authorities to deliberate about the proposals before creating solid waste management policies.展开更多
This paper combines interval-valued intuitionistic fuzzy sets and rough sets.It studies rougheness in interval-valued intuitionistic fuzzy sets and proposes one kind of interval-valued intuitionistic fuzzy-rough sets ...This paper combines interval-valued intuitionistic fuzzy sets and rough sets.It studies rougheness in interval-valued intuitionistic fuzzy sets and proposes one kind of interval-valued intuitionistic fuzzy-rough sets models under the equivalence relation in crisp sets.That extends the classical rough set defined by Pawlak.展开更多
In this paper, the concept of weighted possibilistic mean of interval- valued fuzzy number is first introduced. Further, the notions of weighted possibilistic variance, covariance and correlation of interval-valued fu...In this paper, the concept of weighted possibilistic mean of interval- valued fuzzy number is first introduced. Further, the notions of weighted possibilistic variance, covariance and correlation of interval-valued fuzzy numbers are presented. Meantime, some important properties of them and relationships between them are studied.展开更多
In 2000, Wu and Gong [1] introduced the thought of the Henstock integrals of inter-valvalued functions and fuzzy-number-valued functions and obtained a number of their properties. The aim of this paper is to introduce...In 2000, Wu and Gong [1] introduced the thought of the Henstock integrals of inter-valvalued functions and fuzzy-number-valued functions and obtained a number of their properties. The aim of this paper is to introduce the thought of the AP- Henstock integrals of interval-valued functions and fuzzy-number-valued functions which are extensions of [1] and investigate a number of their properties.展开更多
In this paper we introduce the notion of the Henstock-Stieltjes (HS) integrals of interval-valued functions and fuzzy-number-valued functions and discuss some of their properties.
The objective of this paper is to deal with a kind of fuzzy linear programming problem based on interval\|valued fuzzy sets (IVFLP) through the medium of procedure that turns IVFLP into parametric linear programming v...The objective of this paper is to deal with a kind of fuzzy linear programming problem based on interval\|valued fuzzy sets (IVFLP) through the medium of procedure that turns IVFLP into parametric linear programming via the mathematical programming.Some useful results for the benefit of solving IVFLP are expounded and proved,developed and discussed.Furthermore,that the proposed techniques in this paper allow the decision\|maker to assign a different degree of importance can provide a useful way to efficiently help the decision\|maker make their decisions.展开更多
Bipolar Interval-valued neutrosophic set is another generalization of fuzzy set,neutrosophic set,bipolar fuzzy set and bipolar neutrosophic set and thus when applied to the optimization problem handles uncertain data ...Bipolar Interval-valued neutrosophic set is another generalization of fuzzy set,neutrosophic set,bipolar fuzzy set and bipolar neutrosophic set and thus when applied to the optimization problem handles uncertain data more efficiently and flexibly.Current work is an effort to design a flexible optimization model in the backdrop of interval-valued bipolar neutrosophic sets.Bipolar interval-valued neutrosophic membership grades are picked so that they indicate the restriction of the plausible infringement of the inequalities given in the problem.To prove the adequacy and effectiveness of the method a unified system of sustainable medical healthcare supply chain model with an uncertain figure of product complaints is used.Time,quality and cost are considered as satisfaction level to choose best supplier for medicine procurement.The proposed model ensures 99%satisfaction for cost reduction,63%satisfaction for the quality of product and 64%satisfaction for total time taken in medicine supply chain.展开更多
Intuitionistic fuzzy sets(IFSs) are useful means to describe and deal with vague and uncertain data.An intuitionistic fuzzy C-means algorithm to cluster IFSs is developed.In each stage of the intuitionistic fuzzy C-me...Intuitionistic fuzzy sets(IFSs) are useful means to describe and deal with vague and uncertain data.An intuitionistic fuzzy C-means algorithm to cluster IFSs is developed.In each stage of the intuitionistic fuzzy C-means method the seeds are modified,and for each IFS a membership degree to each of the clusters is estimated.In the end of the algorithm,all the given IFSs are clustered according to the estimated membership degrees.Furthermore,the algorithm is extended for clustering interval-valued intuitionistic fuzzy sets(IVIFSs).Finally,the developed algorithms are illustrated through conducting experiments on both the real-world and simulated data sets.展开更多
Intuitionistic fuzzy set (IFS) is a set of 2-tuple arguments, each of which is characterized by a membership degree and a nonmembership degree. The generalized form of IFS is interval-valued intuitionistic fuzzy set...Intuitionistic fuzzy set (IFS) is a set of 2-tuple arguments, each of which is characterized by a membership degree and a nonmembership degree. The generalized form of IFS is interval-valued intuitionistic fuzzy set (IVIFS), whose components are intervals rather than exact numbers. IFSs and IVIFSs have been found to be very useful to describe vagueness and uncertainty. However, it seems that little attention has been focused on the clustering analysis of IFSs and IVIFSs. An intuitionistic fuzzy hierarchical algorithm is introduced for clustering IFSs, which is based on the traditional hierarchical clustering procedure, the intuitionistic fuzzy aggregation operator, and the basic distance measures between IFSs: the Hamming distance, normalized Hamming, weighted Hamming, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance. Subsequently, the algorithm is extended for clustering IVIFSs. Finally the algorithm and its extended form are applied to the classifications of building materials and enterprises respectively.展开更多
Because of the uncertainty and subjectivity of decision makers in the complex decision-making environment,the evaluation information of alternatives given by decision makers is often fuzzy and uncertain.As a generaliz...Because of the uncertainty and subjectivity of decision makers in the complex decision-making environment,the evaluation information of alternatives given by decision makers is often fuzzy and uncertain.As a generalization of intuitionistic fuzzy set(IFSs)and Pythagoras fuzzy set(PFSs),q-rung orthopair fuzzy set(q-ROFS)is more suitable for expressing fuzzy and uncertain information.But,in actual multiple attribute decision making(MADM)problems,the weights of DMs and attributes are always completely unknown or partly known,to date,the maximizing deviation method is a good tool to deal with such issues.Thus,combine the q-ROFS and conventional maximizing deviation method,we will study the maximizing deviation method under q-ROFSs and q-RIVOFSs in this paper.Firstly,we briefly introduce the basic concept of q-rung orthopair fuzzy sets(q-ROFSs)and q-rung interval-valued orthopair fuzzy sets(q-RIVOFSs).Then,combine the maximizing deviation method with q-rung orthopair fuzzy information,we establish two new decision making models.On this basis,the proposed models are applied to MADM problems with q-rung orthopair fuzzy information.Compared with existing methods,the effectiveness and superiority of the new model are analyzed.This method can effectively solve the MADM problem whose decision information is represented by q-rung orthopair fuzzy numbers(q-ROFNs)and whose attributes are incomplete.展开更多
Developing and optimizing fuzzy relation equations are of great relevance in system modeling,which involves analysis of numerous fuzzy rules.As each rule varies with respect to its level of influence,it is advocated t...Developing and optimizing fuzzy relation equations are of great relevance in system modeling,which involves analysis of numerous fuzzy rules.As each rule varies with respect to its level of influence,it is advocated that the performance of a fuzzy relation equation is strongly related to a subset of fuzzy rules obtained by removing those without significant relevance.In this study,we establish a novel framework of developing granular fuzzy relation equations that concerns the determination of an optimal subset of fuzzy rules.The subset of rules is selected by maximizing their performance of the obtained solutions.The originality of this study is conducted in the following ways.Starting with developing granular fuzzy relation equations,an interval-valued fuzzy relation is determined based on the selected subset of fuzzy rules(the subset of rules is transformed to interval-valued fuzzy sets and subsequently the interval-valued fuzzy sets are utilized to form interval-valued fuzzy relations),which can be used to represent the fuzzy relation of the entire rule base with high performance and efficiency.Then,the particle swarm optimization(PSO)is implemented to solve a multi-objective optimization problem,in which not only an optimal subset of rules is selected but also a parameterεfor specifying a level of information granularity is determined.A series of experimental studies are performed to verify the feasibility of this framework and quantify its performance.A visible improvement of particle swarm optimization(about 78.56%of the encoding mechanism of particle swarm optimization,or 90.42%of particle swarm optimization with an exploration operator)is gained over the method conducted without using the particle swarm optimization algorithm.展开更多
Knowledge-based modeling is a trend in complex system modeling technology. To extract the process knowledge from an information system, an approach of knowledge modeling based on interval-valued fuzzy rough set is pre...Knowledge-based modeling is a trend in complex system modeling technology. To extract the process knowledge from an information system, an approach of knowledge modeling based on interval-valued fuzzy rough set is presented in this paper, in which attribute reduction is a key to obtain the simplified knowledge model. Through defining dependency and inclusion functions, algorithms for attribute reduction and rule extraction are obtained. The approximation inference plays an important role in the development of the fuzzy system. To improve the inference mechanism, we provide a method of similaritybased inference in an interval-valued fuzzy environment. Combining the conventional compositional rule of inference with similarity based approximate reasoning, an inference result is deduced via rule translation, similarity matching, relation modification, and projection operation. This approach is applied to the problem of predicting welding distortion in marine structures, and the experimental results validate the effectiveness of the proposed methods of knowledge modeling and similarity-based inference.展开更多
There is a certain degree of ambiguity associated with remote sensing as a means of performing earth observations.Using interval-valued data to describe clustering prototype features may be more suitable for handling ...There is a certain degree of ambiguity associated with remote sensing as a means of performing earth observations.Using interval-valued data to describe clustering prototype features may be more suitable for handling the fuzzy nature of remote sensing data,which is caused by the uncertainty and heterogeneity in the surface spectral reflectance of ground objects.After constructing a multi-spectral interval-valued model of source data and defining a distance measure to achieve the maximum dissimilarity between intervals,an interval-valued fuzzy c-means(FCM)clustering algorithm that considers both the functional characteristics of fuzzy clustering algorithms and the interregional features of ground object spectral reflectance was applied in this study.Such a process can significantly improve the clustering effect;specifically,the process can reduce the synonym spectrum phenomenon and the misclassification caused by the overlap of spectral features between classes of clustering results.Clustering analysis experiments aimed at land cover classification using remote sensing imagery from the SPOT-5 satellite sensor for the Pearl River Delta region,China,and the TM sensor for Yushu,Qinghai,China,were conducted,as well as experiments involving the conventional FCM algorithm,the results of which were used for comparative analysis.Next,a supervised classification method was used to validate the clustering results.The final results indicate that the proposed interval-valued FCM clustering is more effective than the conventional FCM clustering method for land cover classification using multi-spectral remote sensing imagery.展开更多
基金funded by King Saud University,Riyadh,Saudi Arabia.
文摘Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and strategies to assist them in realizing sustainable development.Because of the speculative character of human opinions,supplier selection frequently includes unreliable data,and the interval-valued Pythagorean fuzzy soft set(IVPFSS)provides an exceptional capacity to cope with excessive fuzziness,inconsistency,and inexactness through the decision-making procedure.The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers(IVPFSNs)and create two interaction operators-the intervalvalued Pythagorean fuzzy soft interaction weighted average(IVPFSIWA)and the interval-valued Pythagorean fuzzy soft interaction weighted geometric(IVPFSIWG)operators,and analyze their properties.These operators are highly advantageous in addressing uncertain problems by considering membership and non-membership values within intervals,providing a superior solution to other methods.Moreover,specialist judgments were calculated by the MCGDM technique,supporting the use of interaction AOs to regulate the interdependence and fundamental partiality of green supplier assessment aspects.Lastly,a statistical clarification of the planned method for green supplier selection is presented.
基金funding this work through General Research Project under Grant No.R.G.P.327/43.
文摘Experts use Pythagorean fuzzy hypersoft sets(PFHSS)in their investigations to resolve the indeterminate and imprecise information in the decision-making process.Aggregation operators(AOs)perform a leading role in perceptivity among two circulations of prospect and pull out concerns from that perception.In this paper,we extend the concept of PFHSS to interval-valued PFHSS(IVPFHSS),which is the generalized form of intervalvalued intuitionistic fuzzy soft set.The IVPFHSS competently deals with uncertain and ambagious information compared to the existing interval-valued Pythagorean fuzzy soft set.It is the most potent method for amplifying fuzzy data in the decision-making(DM)practice.Some operational laws for IVPFHSS have been proposed.Based on offered operational laws,two inventive AOs have been established:interval-valued Pythagorean fuzzy hypersoft weighted average(IVPFHSWA)and interval-valued Pythagorean fuzzy hypersoft weighted geometric(IVPFHSWG)operators with their essential properties.Multi-criteria group decision-making(MCGDM)shows an active part in contracts with the difficulties in industrial enterprise for material selection.But,the prevalent MCGDM approaches consistently carry irreconcilable consequences.Based on the anticipated AOs,a robust MCGDMtechnique is deliberate formaterial selection in industrial enterprises to accommodate this shortcoming.A real-world application of the projectedMCGDMmethod for material selection(MS)of cryogenic storing vessels is presented.The impacts show that the intended model is more effective and reliable in handling imprecise data based on IVPFHSS.
基金The National Natural Science Foundation of China (No70571087)the National Science Fund for Distinguished Young Scholarsof China (No70625005)
文摘The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the normalized Hamming distance, the weighted Hamming distance, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance, etc. Then, by combining the Hausdorff metric with the Hamming distance, the Euclidean distance and their weighted versions, two other similarity measures between IVIFSs, i. e., the weighted Hamming distance based on the Hausdorff metric and the weighted Euclidean distance based on the Hausdorff metric, are defined, and then some of their properties are studied. Finally, based on these distance measures, some similarity measures between IVIFSs are defined, and the similarity measures are applied to pattern recognitions with interval-valued intuitionistic fuzzy information.
基金supported by the National Natural Science Foundation of China(60774100)the Natural Science Foundation of Shandong Province of China(Y2007A15)
文摘The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy implications by means of a type of impli- cations and a parameter on the unit interval, then uses them to establish fully implicational reasoning methods for interval-valued fuzzy modus ponens (IFMP) and interval-valued fuzzy modus tel- lens (IFMT) problems. At the same time the reversibility properties of these methods are analyzed and the reversible conditions are given. It is shown that the existing unified forms of α-triple I (the abbreviation of triple implications) methods for FMP and FMT can be seen as the particular cases of our methods for IFMP and IFMT.
基金supported by the National Natural Science Foundation of China (71171048)the Scientific Research and Innovation Project for College Graduates of Jiangsu Province (CXZZ11 0185)+1 种基金the Scientific Research Foundation of Graduate School of Southeast University (YBJJ1135)the State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University (RCS2011K002)
文摘The notion of the interval-valued intuitionistic fuzzy set (IVIFS) is a generalization of that of the Atanassov's intuitionistic fuzzy set. The fundamental characteristic of IVIFS is that the values of its membership function and non-membership function are intervals rather than exact numbers. There are various averaging operators defined for IVlFSs. These operators are not monotone with respect to the total order of IVIFS, which is undesirable. This paper shows how such averaging operators can be represented by using additive generators of the product triangular norm, which simplifies and extends the existing constructions. Moreover, two new aggregation operators based on the t.ukasiewicz triangular norm are proposed, which are monotone with respect to the total order of IVIFS. Finally, an application of the interval-valued intuitionistic fuzzy weighted averaging operator is given to multiple criteria decision making.
文摘Interval-valued Pythagorean fuzzy soft set(IVPFSS)is a generalization of the interval-valued intuitionistic fuzzy soft set(IVIFSS)and interval-valued Pythagorean fuzzy set(IVPFS).The IVPFSS handled more uncertainty comparative to IVIFSS;it is the most significant technique for explaining fuzzy information in the decision-making process.In this work,some novel operational laws for IVPFSS have been proposed.Based on presented operational laws,two innovative aggregation operators(AOs)have been developed such as interval-valued Pythagorean fuzzy soft weighted average(IVPFSWA)and interval-valued Pythagorean fuzzy soft weighted geometric(IVPFSWG)operators with their fundamental properties.A multi-attribute group decision-making(MAGDM)approach has been established utilizing our developed operators.A numerical example has been presented to ensure the validity of the proposed MAGDM technique.Finally,comparative studies have been given between the proposed approach and some existing studies.The obtained results through comparative studies show that the proposed technique is more credible and reliable than existing approaches.
基金supported by the National Research Foundation(NRF)of Korea Grant funded by the Korean Government(MSIT)(NRF-2020S1A5A8044635).
文摘As the quantity of garbage created every day rises,solid waste management has become the world’s most important issue.As a result,improper solid waste disposal and major sanitary issues develop,which are only detected after they have become dangerous.Due to the system’s lockdown during the COVID-19 pandemic,this scenario became much more uncertain.We are at the stage to develop and execute effective waste management procedures,as well as long-term policies and forward-thinking programmes that can work even in the most adverse of scenarios.We incorporate major solid waste(organic and inorganic solid wastes)approaches that actually perform well in normal cases by reducing waste and environmental disasters;however,in such an uncertain scenario like the COVID-19 pandemic,the project automatically allows for a larger number of criteria,all of which are dealt with using fuzzy Multi-Criteria Group Decision Making(MCGDM)methods.The ELECTRE Ⅲ(ELimination Et Choice Translating REality-Ⅲ)approach,which is a novel decision-making strategy for determining the best way to dispose and reduce garbage by combining traditional ELECTRE Ⅲ with an interval-valued q-rung orthopair fuzzy set(IVq-ROFS),is described in detail in this article.To confirm the efficacy of the recommended model,a numerical explanation is provided,as well as sensitivity and comparative analyses.Obviously,the findings encourage decision-makers in authorities to deliberate about the proposals before creating solid waste management policies.
基金supported by grants from the National Natural Science Foundation of China(Nos.10971185 and 10971186)the Natural Science Foundation of Fujiang Province in China(No.2008F5066).
文摘This paper combines interval-valued intuitionistic fuzzy sets and rough sets.It studies rougheness in interval-valued intuitionistic fuzzy sets and proposes one kind of interval-valued intuitionistic fuzzy-rough sets models under the equivalence relation in crisp sets.That extends the classical rough set defined by Pawlak.
基金The NSF (10971232,60673191,60873055) of Chinathe NSF (8151042001000005,9151026005000002) of Guangdong Province+1 种基金the Guangdong Province Planning Project of Philosophy and Social Sciences (09O-19)the Guangdong Universities Subject Construction Special Foundation
文摘In this paper, the concept of weighted possibilistic mean of interval- valued fuzzy number is first introduced. Further, the notions of weighted possibilistic variance, covariance and correlation of interval-valued fuzzy numbers are presented. Meantime, some important properties of them and relationships between them are studied.
文摘In 2000, Wu and Gong [1] introduced the thought of the Henstock integrals of inter-valvalued functions and fuzzy-number-valued functions and obtained a number of their properties. The aim of this paper is to introduce the thought of the AP- Henstock integrals of interval-valued functions and fuzzy-number-valued functions which are extensions of [1] and investigate a number of their properties.
文摘In this paper we introduce the notion of the Henstock-Stieltjes (HS) integrals of interval-valued functions and fuzzy-number-valued functions and discuss some of their properties.
文摘The objective of this paper is to deal with a kind of fuzzy linear programming problem based on interval\|valued fuzzy sets (IVFLP) through the medium of procedure that turns IVFLP into parametric linear programming via the mathematical programming.Some useful results for the benefit of solving IVFLP are expounded and proved,developed and discussed.Furthermore,that the proposed techniques in this paper allow the decision\|maker to assign a different degree of importance can provide a useful way to efficiently help the decision\|maker make their decisions.
基金The research has been partially funded by the University of Oradea,within the Grants Competition“Scientific Research of Excellence Related to Priority Areas with Capitalization through Technology Transfer:INO-TRANSFER-UO”,Project No.323/2021.
文摘Bipolar Interval-valued neutrosophic set is another generalization of fuzzy set,neutrosophic set,bipolar fuzzy set and bipolar neutrosophic set and thus when applied to the optimization problem handles uncertain data more efficiently and flexibly.Current work is an effort to design a flexible optimization model in the backdrop of interval-valued bipolar neutrosophic sets.Bipolar interval-valued neutrosophic membership grades are picked so that they indicate the restriction of the plausible infringement of the inequalities given in the problem.To prove the adequacy and effectiveness of the method a unified system of sustainable medical healthcare supply chain model with an uncertain figure of product complaints is used.Time,quality and cost are considered as satisfaction level to choose best supplier for medicine procurement.The proposed model ensures 99%satisfaction for cost reduction,63%satisfaction for the quality of product and 64%satisfaction for total time taken in medicine supply chain.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars(70625005)
文摘Intuitionistic fuzzy sets(IFSs) are useful means to describe and deal with vague and uncertain data.An intuitionistic fuzzy C-means algorithm to cluster IFSs is developed.In each stage of the intuitionistic fuzzy C-means method the seeds are modified,and for each IFS a membership degree to each of the clusters is estimated.In the end of the algorithm,all the given IFSs are clustered according to the estimated membership degrees.Furthermore,the algorithm is extended for clustering interval-valued intuitionistic fuzzy sets(IVIFSs).Finally,the developed algorithms are illustrated through conducting experiments on both the real-world and simulated data sets.
基金supported by the National Natural Science Foundation of China (70571087)the National Science Fund for Distinguished Young Scholars of China (70625005)
文摘Intuitionistic fuzzy set (IFS) is a set of 2-tuple arguments, each of which is characterized by a membership degree and a nonmembership degree. The generalized form of IFS is interval-valued intuitionistic fuzzy set (IVIFS), whose components are intervals rather than exact numbers. IFSs and IVIFSs have been found to be very useful to describe vagueness and uncertainty. However, it seems that little attention has been focused on the clustering analysis of IFSs and IVIFSs. An intuitionistic fuzzy hierarchical algorithm is introduced for clustering IFSs, which is based on the traditional hierarchical clustering procedure, the intuitionistic fuzzy aggregation operator, and the basic distance measures between IFSs: the Hamming distance, normalized Hamming, weighted Hamming, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance. Subsequently, the algorithm is extended for clustering IVIFSs. Finally the algorithm and its extended form are applied to the classifications of building materials and enterprises respectively.
基金supported by the National Natural Science Foundation of China under Grant No.71571128the Humanities and Social Sciences Foundation of Ministry of Education of the People’s Republic of China(No.17XJA630003).
文摘Because of the uncertainty and subjectivity of decision makers in the complex decision-making environment,the evaluation information of alternatives given by decision makers is often fuzzy and uncertain.As a generalization of intuitionistic fuzzy set(IFSs)and Pythagoras fuzzy set(PFSs),q-rung orthopair fuzzy set(q-ROFS)is more suitable for expressing fuzzy and uncertain information.But,in actual multiple attribute decision making(MADM)problems,the weights of DMs and attributes are always completely unknown or partly known,to date,the maximizing deviation method is a good tool to deal with such issues.Thus,combine the q-ROFS and conventional maximizing deviation method,we will study the maximizing deviation method under q-ROFSs and q-RIVOFSs in this paper.Firstly,we briefly introduce the basic concept of q-rung orthopair fuzzy sets(q-ROFSs)and q-rung interval-valued orthopair fuzzy sets(q-RIVOFSs).Then,combine the maximizing deviation method with q-rung orthopair fuzzy information,we establish two new decision making models.On this basis,the proposed models are applied to MADM problems with q-rung orthopair fuzzy information.Compared with existing methods,the effectiveness and superiority of the new model are analyzed.This method can effectively solve the MADM problem whose decision information is represented by q-rung orthopair fuzzy numbers(q-ROFNs)and whose attributes are incomplete.
基金supported by the National Natural Sci-ence Foundation of China(62006184,62076189,61873277).
文摘Developing and optimizing fuzzy relation equations are of great relevance in system modeling,which involves analysis of numerous fuzzy rules.As each rule varies with respect to its level of influence,it is advocated that the performance of a fuzzy relation equation is strongly related to a subset of fuzzy rules obtained by removing those without significant relevance.In this study,we establish a novel framework of developing granular fuzzy relation equations that concerns the determination of an optimal subset of fuzzy rules.The subset of rules is selected by maximizing their performance of the obtained solutions.The originality of this study is conducted in the following ways.Starting with developing granular fuzzy relation equations,an interval-valued fuzzy relation is determined based on the selected subset of fuzzy rules(the subset of rules is transformed to interval-valued fuzzy sets and subsequently the interval-valued fuzzy sets are utilized to form interval-valued fuzzy relations),which can be used to represent the fuzzy relation of the entire rule base with high performance and efficiency.Then,the particle swarm optimization(PSO)is implemented to solve a multi-objective optimization problem,in which not only an optimal subset of rules is selected but also a parameterεfor specifying a level of information granularity is determined.A series of experimental studies are performed to verify the feasibility of this framework and quantify its performance.A visible improvement of particle swarm optimization(about 78.56%of the encoding mechanism of particle swarm optimization,or 90.42%of particle swarm optimization with an exploration operator)is gained over the method conducted without using the particle swarm optimization algorithm.
基金supported in part by the National Natural Science Foundation of China (No.71071161)the National Science Fund for Distinguished Young Scholars of China (No.70625005)
基金supported by 2013 Comprehensive Reform Pilot of Marine Engineering Specialty(No.ZG0434)
文摘Knowledge-based modeling is a trend in complex system modeling technology. To extract the process knowledge from an information system, an approach of knowledge modeling based on interval-valued fuzzy rough set is presented in this paper, in which attribute reduction is a key to obtain the simplified knowledge model. Through defining dependency and inclusion functions, algorithms for attribute reduction and rule extraction are obtained. The approximation inference plays an important role in the development of the fuzzy system. To improve the inference mechanism, we provide a method of similaritybased inference in an interval-valued fuzzy environment. Combining the conventional compositional rule of inference with similarity based approximate reasoning, an inference result is deduced via rule translation, similarity matching, relation modification, and projection operation. This approach is applied to the problem of predicting welding distortion in marine structures, and the experimental results validate the effectiveness of the proposed methods of knowledge modeling and similarity-based inference.
基金supported by the National Natural Science Foundation of China(Grant Nos.41272359&11001019)the Specialized Research Fund for the Doctoral Program of Higher Education(SRFDP)the Fundamental Research Funds for the Central Universities
文摘There is a certain degree of ambiguity associated with remote sensing as a means of performing earth observations.Using interval-valued data to describe clustering prototype features may be more suitable for handling the fuzzy nature of remote sensing data,which is caused by the uncertainty and heterogeneity in the surface spectral reflectance of ground objects.After constructing a multi-spectral interval-valued model of source data and defining a distance measure to achieve the maximum dissimilarity between intervals,an interval-valued fuzzy c-means(FCM)clustering algorithm that considers both the functional characteristics of fuzzy clustering algorithms and the interregional features of ground object spectral reflectance was applied in this study.Such a process can significantly improve the clustering effect;specifically,the process can reduce the synonym spectrum phenomenon and the misclassification caused by the overlap of spectral features between classes of clustering results.Clustering analysis experiments aimed at land cover classification using remote sensing imagery from the SPOT-5 satellite sensor for the Pearl River Delta region,China,and the TM sensor for Yushu,Qinghai,China,were conducted,as well as experiments involving the conventional FCM algorithm,the results of which were used for comparative analysis.Next,a supervised classification method was used to validate the clustering results.The final results indicate that the proposed interval-valued FCM clustering is more effective than the conventional FCM clustering method for land cover classification using multi-spectral remote sensing imagery.