In real life,incomplete information,inaccurate data,and the preferences of decision-makers during qualitative judgment would impact the process of decision-making.As a technical instrument that can successfully handle...In real life,incomplete information,inaccurate data,and the preferences of decision-makers during qualitative judgment would impact the process of decision-making.As a technical instrument that can successfully handle uncertain information,Fermatean fuzzy sets have recently been used to solve the multi-attribute decision-making(MADM)problems.This paper proposes a Fermatean hesitant fuzzy information aggregation method to address the problem of fusion where the membership,non-membership,and priority are considered simultaneously.Combining the Fermatean hesitant fuzzy sets with Heronian Mean operators,this paper proposes the Fermatean hesitant fuzzy Heronian mean(FHFHM)operator and the Fermatean hesitant fuzzyweighted Heronian mean(FHFWHM)operator.Then,considering the priority relationship between attributes is often easier to obtain than the weight of attributes,this paper defines a new Fermatean hesitant fuzzy prioritized Heronian mean operator(FHFPHM),and discusses its elegant properties such as idempotency,boundedness and monotonicity in detail.Later,for problems with unknown weights and the Fermatean hesitant fuzzy information,aMADM approach based on prioritized attributes is proposed,which can effectively depict the correlation between attributes and avoid the influence of subjective factors on the results.Finally,a numerical example of multi-sensor electronic surveillance is applied to verify the feasibility and validity of the method proposed in this paper.展开更多
The Maclaurin symmetric mean(MSM)operator exhibits a desirable characteristic by effectively capturing the correlations among multiple input parameters,and it serves as an extension of certain existing aggregation ope...The Maclaurin symmetric mean(MSM)operator exhibits a desirable characteristic by effectively capturing the correlations among multiple input parameters,and it serves as an extension of certain existing aggregation operators through adjustments to the parameter k.The hesitant q-rung orthopair set(Hq-ROFSs)can serve as an extension of the existing orthopair fuzzy sets,which provides decision makers more freedom in describing their true opinions.The objective of this paper is to present an MSM operator to aggregate hesitant q-rung orthopair numbers and solve the multiple attribute decision making(MADM)problems in which the attribute values take the form of hesitant q-rung orthopair fuzzy sets(H-qROFSs).Firstly,the definition of H-qROFSs and some operational laws of H-qROFSs are proposed.Then we develop a family of hesitant q-rung orthopair fuzzy maclaurin symmetric mean aggregation operators,such as the hesitant q-rung orthopair fuzzy maclaurin symmetric mean(Hq-ROFMSM)operator,the hesitant q-rung orthopair fuzzy weighted maclaurin symmetric mean(Hq-ROFWMSM)operator,the hesitant q-rung orthopair fuzzy dual maclaurin symmetric mean(Hq-ROFDMSM)operator,the hesitant q-rung orthopair fuzzy weighted dual maclaurin symmetric mean(Hq-ROFWDMSM)operator.And the properties and special cases of these proposed operators are studied.Furthermore,an approach based on the Hq-ROFWMSM operator is proposed for multiple attribute decision making problems under hesitant q-rung orthopair fuzzy environment.Finally,a numerical example and comparative analysis is given to illustrate the application of the proposed approach.展开更多
文摘In real life,incomplete information,inaccurate data,and the preferences of decision-makers during qualitative judgment would impact the process of decision-making.As a technical instrument that can successfully handle uncertain information,Fermatean fuzzy sets have recently been used to solve the multi-attribute decision-making(MADM)problems.This paper proposes a Fermatean hesitant fuzzy information aggregation method to address the problem of fusion where the membership,non-membership,and priority are considered simultaneously.Combining the Fermatean hesitant fuzzy sets with Heronian Mean operators,this paper proposes the Fermatean hesitant fuzzy Heronian mean(FHFHM)operator and the Fermatean hesitant fuzzyweighted Heronian mean(FHFWHM)operator.Then,considering the priority relationship between attributes is often easier to obtain than the weight of attributes,this paper defines a new Fermatean hesitant fuzzy prioritized Heronian mean operator(FHFPHM),and discusses its elegant properties such as idempotency,boundedness and monotonicity in detail.Later,for problems with unknown weights and the Fermatean hesitant fuzzy information,aMADM approach based on prioritized attributes is proposed,which can effectively depict the correlation between attributes and avoid the influence of subjective factors on the results.Finally,a numerical example of multi-sensor electronic surveillance is applied to verify the feasibility and validity of the method proposed in this paper.
基金Supported by the Key Project of Humanities and Social Research Science Institute of Chongqing Municipal Education Commission(22SKGH432,22SKGH428)2023 Chongqing Education Commission Humanities and Social Sciences Research General Project(23SKGH353)Science and Technology Research Project of Chongqing Education Commission(KJQN202101524)。
文摘The Maclaurin symmetric mean(MSM)operator exhibits a desirable characteristic by effectively capturing the correlations among multiple input parameters,and it serves as an extension of certain existing aggregation operators through adjustments to the parameter k.The hesitant q-rung orthopair set(Hq-ROFSs)can serve as an extension of the existing orthopair fuzzy sets,which provides decision makers more freedom in describing their true opinions.The objective of this paper is to present an MSM operator to aggregate hesitant q-rung orthopair numbers and solve the multiple attribute decision making(MADM)problems in which the attribute values take the form of hesitant q-rung orthopair fuzzy sets(H-qROFSs).Firstly,the definition of H-qROFSs and some operational laws of H-qROFSs are proposed.Then we develop a family of hesitant q-rung orthopair fuzzy maclaurin symmetric mean aggregation operators,such as the hesitant q-rung orthopair fuzzy maclaurin symmetric mean(Hq-ROFMSM)operator,the hesitant q-rung orthopair fuzzy weighted maclaurin symmetric mean(Hq-ROFWMSM)operator,the hesitant q-rung orthopair fuzzy dual maclaurin symmetric mean(Hq-ROFDMSM)operator,the hesitant q-rung orthopair fuzzy weighted dual maclaurin symmetric mean(Hq-ROFWDMSM)operator.And the properties and special cases of these proposed operators are studied.Furthermore,an approach based on the Hq-ROFWMSM operator is proposed for multiple attribute decision making problems under hesitant q-rung orthopair fuzzy environment.Finally,a numerical example and comparative analysis is given to illustrate the application of the proposed approach.