Uncertain and hesitant information, widely existing in the real-world qualitative decision making problems, brings great challenges to decision makers. Hesitant fuzzy linguistic term sets(HFLTSs), an effective linguis...Uncertain and hesitant information, widely existing in the real-world qualitative decision making problems, brings great challenges to decision makers. Hesitant fuzzy linguistic term sets(HFLTSs), an effective linguistic computational tool in modeling and eliciting such information, have hence aroused many scholars’ interests and some extensions have been introduced recently.However, these methods are based on the discrete linguistic term framework with the limited expression domain, which actually depict qualitative information using several single values. Therefore,it is hard to ensure the integrity of the semantics representation and the accuracy of the computation results. To deal with this problem, a semantics basis framework called complete linguistic term set(CLTS) is designed, which adopts a separation structure of linguistic scale and expression domain, enriching semantics representation of decision makers. On this basis the concept of fuzzy interval linguistic sets(FILSs) is put forward that employs the interval linguistic term with probability to increase the flexibility of eliciting and representing uncertain and hesitant qualitative information. For practical applications, a fuzzy interval linguistic technique for order preference by similarity to ideal solution(FILTOPSIS) method is developed to deal with multi-attribute group decision making(MAGDM) problems. Through the cases of movie and enterprise resource planning(ERP) system selection, the effectiveness and validity of the proposed method are illustrated.展开更多
A dynamic hesitant fuzzy linguistic group decisionmaking(DHFLGDM) problem is studied from the perspective of information reliability based on the theory of hesitant fuzzy linguistic term sets(HFLTSs). First, an approa...A dynamic hesitant fuzzy linguistic group decisionmaking(DHFLGDM) problem is studied from the perspective of information reliability based on the theory of hesitant fuzzy linguistic term sets(HFLTSs). First, an approach is applied to transform the dynamic HFLTSs(DHFLTSs) into a set of proportional linguistic terms to eliminate the time dimension. Second, expert reliability is measured by considering both group similarity and degree of certainty, and an optimization method is employed to quantify the linguistic terms by maximizing the group similarity. Third, through computing the attribute stability as well as its reliability, a combination rule which considers both reliability and weight is proposed to aggregate the information, and then the aggregated grade values and degree of stability are used to make a selection. Finally,the application and feasibility of the proposed method are verified through a case study and method comparison.展开更多
Hydrogen is the new age alternative energy source to combat energy demand and climate change.Storage of hydrogen is vital for a nation’s growth.Works of literature provide different methods for storing the produced h...Hydrogen is the new age alternative energy source to combat energy demand and climate change.Storage of hydrogen is vital for a nation’s growth.Works of literature provide different methods for storing the produced hydrogen,and the rational selection of a viable method is crucial for promoting sustainability and green practices.Typically,hydrogen storage is associated with diverse sustainable and circular economy(SCE)criteria.As a result,the authors consider the situation a multi-criteria decision-making(MCDM)problem.Studies infer that previous models for hydrogen storage method(HSM)selection(i)do not consider preferences in the natural language form;(ii)weights of experts are not methodically determined;(iii)hesitation of experts during criteria weight assessment is not effectively explored;and(iv)three-stage solution of a suitable selection of HSM is unexplored.Driven by these gaps,in this paper,authors put forward a new integrated framework,which considers double hierarchy linguistic information for rating,criteria importance through inter-criteria correlation(CRITIC)for expert weight calculation,evidence-based Bayesian method for criteria weight estimation,and combined compromise solution(CoCoSo)for ranking HSMs.The applicability of the developed framework is testified by using a case example of HSM selection in India.Sensitivity and comparative analysis reveal the merits and limitations of the developed framework.展开更多
Warhead power assessment of the anti-ship missile plays a vital role in determining the optimal design of missile, thus having important strategic research significance. However, in the assessment process, expert’s j...Warhead power assessment of the anti-ship missile plays a vital role in determining the optimal design of missile, thus having important strategic research significance. However, in the assessment process, expert’s judgement will directly affect the assessment accuracy. In addition,there are many criteria involved in the missile design alternatives. Some criteria with poor performance may be compensated by other criteria with excellent performance, and then it is impossible to find the truly optimal alternative. Aimed at solving these problems, this paper proposes a synthetical assessment process based on fuzzy hesitant linguistic term set and the Gained and Lost Dominance Score(GLDS) method. In order to improve the assessment accuracy of experts and solve the problem that experts generate different opinions, combined with the advantages of fuzzy hesitant sets and linguistic term sets, the double hierarchy hesitant fuzzy linguistic term sets are used in this paper to improve the accuracy of expert’s judgement. In order to effectively combine expert’s experience with the data of criteria, the evidence theory and entropy weight method are used to transfer the expert’s judgement to the weight. In order to avoid selecting defective alternative of missile design, the GLDS is used to fuse expert information and criteria information. Sensitivity analysis shows that the assessment process has sensitivity to some extent. However, when the fluctuation of expert’s assessment makes the fluctuation of θ in the range of-5% to 5%, the impact on the results is not quite conspicuous. The analysis of calculation result and comparative analysis show that the assessment process proposed in this paper is accurate enough, has great advantage in selecting the current and potential optimal alternative of missile design, and avoids the alternatives with low criteria performance that cannot be compensated by other criteria being selected.展开更多
As an generalization of hesitant fuzzy set, interval-valued hesitant fuzzy set and dual hesitant fuzzy set, interval-valued dual hesitant fuzzy set has been proposed and applied in multiple attribute decision making. ...As an generalization of hesitant fuzzy set, interval-valued hesitant fuzzy set and dual hesitant fuzzy set, interval-valued dual hesitant fuzzy set has been proposed and applied in multiple attribute decision making. Hamacher t-norm and t-conorm is an generalization of algebraic and Einstein t-norms and t-conorms. In order to combine interval-valued dual hesitant fuzzy aggregation operators with Hamacher t-norm and t-conorm. We first introduced some new Hamacher operation rules for interval-valued dual hesitant fuzzy elements. Then, several interval-valued dual hesitant fuzzy Hamacher aggregation operators are presented, some desirable properties and their special cases are studied. Further, a new multiple attribute decision making method with these operators is given,and an numerical example is provided to demonstrate that the developed approach is both valid and practical.展开更多
为了解决在实际决策时,由于知识背景不同决策者采用不同粒度语言术语集来表达而导致决策结果不准确的问题,本文提出了一种基于多粒度犹豫模糊语言术语集的逼近理想解排序(technique for order preference by similarity to ideal soluti...为了解决在实际决策时,由于知识背景不同决策者采用不同粒度语言术语集来表达而导致决策结果不准确的问题,本文提出了一种基于多粒度犹豫模糊语言术语集的逼近理想解排序(technique for order preference by similarity to ideal solution,TOPSIS)决策方法。首先选用各术语集中的最大粒度作为标准粒度,通过转换算法将每个决策者的语言术语集转换到同一标准粒度下进行集结,得出相应的隶属度语言术语集;然后结合TOPSIS方法,计算每个备选方案与正、负理想点距离,以相对贴近度的大小排序实现最优方案的选择;最后,通过一个实例,验证该方法的可行性和优越性。本文所提方法可应用于最优方案的选择问题中,提升决策结果准确度。展开更多
基金supported by the National Natural Science Foundation of China(61273275)
文摘Uncertain and hesitant information, widely existing in the real-world qualitative decision making problems, brings great challenges to decision makers. Hesitant fuzzy linguistic term sets(HFLTSs), an effective linguistic computational tool in modeling and eliciting such information, have hence aroused many scholars’ interests and some extensions have been introduced recently.However, these methods are based on the discrete linguistic term framework with the limited expression domain, which actually depict qualitative information using several single values. Therefore,it is hard to ensure the integrity of the semantics representation and the accuracy of the computation results. To deal with this problem, a semantics basis framework called complete linguistic term set(CLTS) is designed, which adopts a separation structure of linguistic scale and expression domain, enriching semantics representation of decision makers. On this basis the concept of fuzzy interval linguistic sets(FILSs) is put forward that employs the interval linguistic term with probability to increase the flexibility of eliciting and representing uncertain and hesitant qualitative information. For practical applications, a fuzzy interval linguistic technique for order preference by similarity to ideal solution(FILTOPSIS) method is developed to deal with multi-attribute group decision making(MAGDM) problems. Through the cases of movie and enterprise resource planning(ERP) system selection, the effectiveness and validity of the proposed method are illustrated.
基金supported by the National Natural Science Foundation of China(71171112 71502073+2 种基金 71601002)the Scientific Innovation Research of College Graduates in Jiangsu Province(KYZZ150094)the Anhui Provincial Natural Science Foundation(1708085MG168)
文摘A dynamic hesitant fuzzy linguistic group decisionmaking(DHFLGDM) problem is studied from the perspective of information reliability based on the theory of hesitant fuzzy linguistic term sets(HFLTSs). First, an approach is applied to transform the dynamic HFLTSs(DHFLTSs) into a set of proportional linguistic terms to eliminate the time dimension. Second, expert reliability is measured by considering both group similarity and degree of certainty, and an optimization method is employed to quantify the linguistic terms by maximizing the group similarity. Third, through computing the attribute stability as well as its reliability, a combination rule which considers both reliability and weight is proposed to aggregate the information, and then the aggregated grade values and degree of stability are used to make a selection. Finally,the application and feasibility of the proposed method are verified through a case study and method comparison.
文摘Hydrogen is the new age alternative energy source to combat energy demand and climate change.Storage of hydrogen is vital for a nation’s growth.Works of literature provide different methods for storing the produced hydrogen,and the rational selection of a viable method is crucial for promoting sustainability and green practices.Typically,hydrogen storage is associated with diverse sustainable and circular economy(SCE)criteria.As a result,the authors consider the situation a multi-criteria decision-making(MCDM)problem.Studies infer that previous models for hydrogen storage method(HSM)selection(i)do not consider preferences in the natural language form;(ii)weights of experts are not methodically determined;(iii)hesitation of experts during criteria weight assessment is not effectively explored;and(iv)three-stage solution of a suitable selection of HSM is unexplored.Driven by these gaps,in this paper,authors put forward a new integrated framework,which considers double hierarchy linguistic information for rating,criteria importance through inter-criteria correlation(CRITIC)for expert weight calculation,evidence-based Bayesian method for criteria weight estimation,and combined compromise solution(CoCoSo)for ranking HSMs.The applicability of the developed framework is testified by using a case example of HSM selection in India.Sensitivity and comparative analysis reveal the merits and limitations of the developed framework.
文摘Warhead power assessment of the anti-ship missile plays a vital role in determining the optimal design of missile, thus having important strategic research significance. However, in the assessment process, expert’s judgement will directly affect the assessment accuracy. In addition,there are many criteria involved in the missile design alternatives. Some criteria with poor performance may be compensated by other criteria with excellent performance, and then it is impossible to find the truly optimal alternative. Aimed at solving these problems, this paper proposes a synthetical assessment process based on fuzzy hesitant linguistic term set and the Gained and Lost Dominance Score(GLDS) method. In order to improve the assessment accuracy of experts and solve the problem that experts generate different opinions, combined with the advantages of fuzzy hesitant sets and linguistic term sets, the double hierarchy hesitant fuzzy linguistic term sets are used in this paper to improve the accuracy of expert’s judgement. In order to effectively combine expert’s experience with the data of criteria, the evidence theory and entropy weight method are used to transfer the expert’s judgement to the weight. In order to avoid selecting defective alternative of missile design, the GLDS is used to fuse expert information and criteria information. Sensitivity analysis shows that the assessment process has sensitivity to some extent. However, when the fluctuation of expert’s assessment makes the fluctuation of θ in the range of-5% to 5%, the impact on the results is not quite conspicuous. The analysis of calculation result and comparative analysis show that the assessment process proposed in this paper is accurate enough, has great advantage in selecting the current and potential optimal alternative of missile design, and avoids the alternatives with low criteria performance that cannot be compensated by other criteria being selected.
基金Supported by the Natural Science Foundation of Higher Education of Jiangsu Province(18KJB110024)the High Training Funded for Professional Leaders of Higher Vocational Colleges in Jiangsu Province(2018GRFX038)Science and Technology Research Project of Nantong Shipping College(HYKY/2018A03)
文摘As an generalization of hesitant fuzzy set, interval-valued hesitant fuzzy set and dual hesitant fuzzy set, interval-valued dual hesitant fuzzy set has been proposed and applied in multiple attribute decision making. Hamacher t-norm and t-conorm is an generalization of algebraic and Einstein t-norms and t-conorms. In order to combine interval-valued dual hesitant fuzzy aggregation operators with Hamacher t-norm and t-conorm. We first introduced some new Hamacher operation rules for interval-valued dual hesitant fuzzy elements. Then, several interval-valued dual hesitant fuzzy Hamacher aggregation operators are presented, some desirable properties and their special cases are studied. Further, a new multiple attribute decision making method with these operators is given,and an numerical example is provided to demonstrate that the developed approach is both valid and practical.
文摘为了解决在实际决策时,由于知识背景不同决策者采用不同粒度语言术语集来表达而导致决策结果不准确的问题,本文提出了一种基于多粒度犹豫模糊语言术语集的逼近理想解排序(technique for order preference by similarity to ideal solution,TOPSIS)决策方法。首先选用各术语集中的最大粒度作为标准粒度,通过转换算法将每个决策者的语言术语集转换到同一标准粒度下进行集结,得出相应的隶属度语言术语集;然后结合TOPSIS方法,计算每个备选方案与正、负理想点距离,以相对贴近度的大小排序实现最优方案的选择;最后,通过一个实例,验证该方法的可行性和优越性。本文所提方法可应用于最优方案的选择问题中,提升决策结果准确度。