AIM: To investigate the role of nuclear factor kappa B (NF-κB) in the pathogenesis of lung injury induced by intestinal ischemia/reperfusion (I/R), and its effect on intercellular adhesion molecule-1 (ICAM-1) ...AIM: To investigate the role of nuclear factor kappa B (NF-κB) in the pathogenesis of lung injury induced by intestinal ischemia/reperfusion (I/R), and its effect on intercellular adhesion molecule-1 (ICAM-1) expression and neutrophil infiltration. METHODS: Twenty-four Wistar rats were divided randomly into control, I/R and pyrrolidine dithiocarbamate (PDTC) treatment groups, n = 8 in each. I/R group and PDTC treatment group received superior mysenteric artery (SMA) occluding for 1 h and reperfusion for 2 h. PDTC group was administrated with intraperitoneal injection of 2% 100 mg/kg PDTC 1 h before surgery. Lung histology and bronchia alveolus lung fluid (BALF) protein were assayed. Serum IL-6, lung malondialdehyde (MDA) and myeloperoxidase (MPO) as well as the expression level of NF-κB and ICAM-1 were measured.RESULTS: Lung injury induced by intestinal I/R, was characterized by edema, hemorrhage and neutrophil infiltration as well as by the significant rising of BALF protein. Compared to control group, the levels of serum IL-6 and lung MDA and MPO increased significantly in I/R group (P=0.001). Strong positive expression of NF-κB p65 and ICAM-1 was observed. After the administration of PDTC, the level of serum IL-6, lung MDA and MPO as well as NF-κB and ICAM-1 decreased significantly (P〈 0.05) when compared to I/R group.CONCLUSION: The activation of NF-κB plays an important role in the pathogenesis of lung injury induced by intestinal I/R through upregulating the neutrophil infiltration and lung ICAM-1 expression. PDTC as an inhibitor of NF-κB can prevent lung injury induced by intestinal I/R through inhibiting the activity of NF-κB.展开更多
AIM: To investigate the effects of terminal ileostomy on bacterial translocation (BT) and systemic inflammation after intestinal ischemia/reperfusion (I/R) injury in rats.
AIM:To investigate the impact of intestinal ischemia/reperfusion(I/R) injury and lymph drainage on distant organs in rats.METHODS:Thirty-two Sprague-Dawley male rats,weighing 280-320 g,were randomly divided into blank...AIM:To investigate the impact of intestinal ischemia/reperfusion(I/R) injury and lymph drainage on distant organs in rats.METHODS:Thirty-two Sprague-Dawley male rats,weighing 280-320 g,were randomly divided into blank,sham,I/R,and ischemia/reperfusion and drainage(I/R + D) groups(n = 8).All rats were subjected to 60 min ischemia by clamping the superior mesenteric artery,followed by 120 min reperfusion.The rats in the I/R + D group received intestinal lymph drainage for 180 min.In the sham group,the abdominal cavity was opened for 180 min,but the rats received no treatment.The blank group served as a normal and untreated control.A chromogenic limulus assay kit was used for quantita-tive detection of serum endotoxin.The serum concentrations of tumor necrosis factor-α(TNF-α),interleukin(IL)-6,IL-1β,soluble cell adhesion molecules(sICAM-1),and high mobility group protein box 1(HMGB1) were determined with an enzyme-linked immunosorbent assay kit.Histological evaluations of the intestine,liver,kidney,and lung were performed by hematoxylin and eosin staining and immunohistochemistry.HMGB1 protein expression was assayed by western blot analysis.RESULTS:The serum levels of endotoxin and HMGB1 in the I/R and I/R + D groups were significantly higher than those in the sham group(endotoxin,I/R and I/R + D vs sham:0.033 ± 0.004 EU/mL,0.024 ± 0.003 EU/mL vs 0.017 ± 0.009 EU/mL,respectively,P < 0.05;HMGB1,I/R and I/R + D vs sham:5.473 ± 0.963 EU/mL,4.906 ± 0.552 EU/mL vs 0.476 ± 0.406 EU/mL,respectively,P < 0.05).In addition,endotoxin and HMGB1 were significantly lower in the I/R + D group compared to the I/R group(P < 0.05).The serum inflammatory factors IL-6,IL-1β,and sICAM-1 in the I/R and I/R + D groups were significantly higher than those in the sham group(IL-6,I/R and I/R + D vs sham:41.773 ± 9.753 pg/mL,19.204 ± 4.136 pg/mL vs 11.566 ± 2.973 pg/mL,respectively,P < 0.05;IL-1β,I/R and I/R + D vs sham:144.646 ± 29.378 pg/mL,65.829 ± 10.888 pg/mL vs 38.178 ± 7.157 pg/mL,respectively,P < 0.05;sICAM-1,I/R and I/R + D vs sham:97.360 ± 12.714 ng/mL,48.401 ± 6.547 ng/mL vs 33.073 ± 5.957 ng/mL,respectively;P < 0.05).The serum TNF-α in the I/R group were significantly higher than in the sham group(45.863 ± 11.553 pg/mL vs 18.863 ± 6.679 pg/mL,respectively,P < 0.05).These factors were significantly lower in the I/R + D group compared to the I/R group(P < 0.05).The HMGB1 immunohistochemical staining results showed no staining or apparent injury in the blank group,and slight staining at the top of the microvillus was detected in the sham group.In the I/R group,both the top of villi and the basement membrane were stained for HMGB1 in most areas,and injury in the I/R + D group was less than that in the I/R group.HMGB1 expression in the liver,kidney,and lung of rats in the I/R + D group was significantly lower than the rats in the I/R group(P < 0.05).CONCLUSION:Lymph drainage could block the "gutlymph" pathway,improve intestinal barrier function,and attenuate distant organ injury incurred by intestinal I/R.展开更多
AIM To evaluate whether fish oil(FO) can protect liver injury induced by intestinal ischemia/reperfusion(I/R) via the AMPK/SIRT-1/autophagy pathway.METHODS Ischemia in wistar rats was induced by superior mesenteric ar...AIM To evaluate whether fish oil(FO) can protect liver injury induced by intestinal ischemia/reperfusion(I/R) via the AMPK/SIRT-1/autophagy pathway.METHODS Ischemia in wistar rats was induced by superior mesenteric artery occlusion for 60 min and reperfusion for 240 min. One milliliter per day of FO emulsion or normal saline was administered by intraperitoneal injection for 5 consecutive days to each animal. Animals were sacrificed at the end of reperfusion. Blood andtissue samples were collected for analyses. AMPK, SIRT-1, and Beclin-1 expression was determined in lipopolysaccharide(LPS)-stimulated HepG2 cells with or without FO emulsion treatment.RESULTS Intestinal I/R induced significant liver morphological changes and increased serum alanine aminotransferase and aspartate aminotransferase levels. Expression of p-AMPK/AMPK, SIRT-1, and autophagy markers was decreased whereas tumor necrosis factor-α(TNF-α) and malonaldehyde(MDA) were increased. FO emulsion blocked the changes of the above indicators effectively. Besides, in LPS-stimulated HepG2 cells, small interfering RNA(siRNA) targeting AMPK impaired the FO induced increase of p-AMPK, SIRT-1, and Beclin-1 and decrease of TNF-α and MDA. SIRT-1 siRNA impaired the increase of SIRT-1 and Beclin-1 and the decrease of TNF-α and MDA.CONCLUSION Our study indicates that FO may protect the liver against intestinal I/R induced injury through the AMPK/SIRT-1/autophagy pathway.展开更多
Intestinal ischemia is a severe disorder with a variety of causes.Reperfusion is a common occurrence during treatment of acute intestinal ischemia but the injury resulting from ischemia/reperfusion(IR)may lead toeven ...Intestinal ischemia is a severe disorder with a variety of causes.Reperfusion is a common occurrence during treatment of acute intestinal ischemia but the injury resulting from ischemia/reperfusion(IR)may lead toeven more serious complications from intestinal atrophy to multiple organ failure and death.The susceptibility of the intestine to IR-induced injury(IRI)appears from various experimental studies and clinical settings such as cardiac and major vascular surgery and organ transplantation.Where as oxygen free radicals,activation of leukocytes,failure of microvascular perfusion,cellular acidosis and disturbance of intracellular homeo-stasis have been implicated as important factors inthe pathogenesis of intestinal IRI,the mechanisms underlying this disorder are not well known.To date,increasing attention is being paid in animal studies to potential pre-and post-ischemia treatments that protect against intestinal IRI such as drug interference with IR-induced apoptosis and inflammation processes and ischemic pre-conditioning.However,better insight is needed into the molecular and cellular events associated with reperfusion-induced damage to develop effective clinical protection protocols to combat this disorder.In this respect,the use of ischemic post-conditioning in combination with experimentally prolonged acidosis blocking deleterious reperfusion actions may turn out to have particular clinical relevance.展开更多
AIM: To investigate the effects of ketamine anesthesia on the motility alterations and tissue injury caused by ischemia/reperfusion in rats. METHODS: Thirty male Wistar rats weighing 200-250 g were used. Ischemia was ...AIM: To investigate the effects of ketamine anesthesia on the motility alterations and tissue injury caused by ischemia/reperfusion in rats. METHODS: Thirty male Wistar rats weighing 200-250 g were used. Ischemia was induced by ob-structing blood flow in 25% of the total small intesti-nal length (ileum) with a vascular clamp for 45 min, after which either 60 min or 24 h of reperfusion was allowed. Rats were either anesthetized with pento-barbital sodium (50 mg/kg) or ketamine (100 mg/kg). Control groups received sham surgery. After 60 min of reperfusion, the intestine was examined for mor-phological alterations, and after 24 h intestinal basic electrical rhythm (BER) frequency was calculated, and intestinal transit determined in all groups. RESULTS: The intestinal mucosa in rats that were anesthetized with ketamine showed moderate altera-tions such as epithelial lifting, while ulceration and hemorrhage was observed in rats that received pento-barbital sodium after 60 min of reperfusion. Quantita-tive analysis of structural damage using the Chiu scaleshowed significantly less injury in rats that received ketamine than in rats that did not (2.35 ± 1.14 vs 4.58 ± 0.50, P < 0.0001). The distance traveled by a mark-er, expressed as percentage of total intestinal length, in rats that received pentobarbital sodium was 20% ± 2% in comparison with 25.9% ± 1.64% in rats that re-ceived ketamine (P = 0.017). BER was not statistically different between groups. CONCLUSION: Our results show that ketamine anesthesia is associated with diminished intestinal injury and abolishes the intestinal transit delay induced by ischemia/reperfusion.展开更多
AIM: To investigate the effect of ginkgo biloba extract (EGb 761) on lung injury induced by intestinal ischemia/ reperfusion ( Ⅱ/R). METHODS: The rat model of Ⅱ/R injury was produced by damping the superior me...AIM: To investigate the effect of ginkgo biloba extract (EGb 761) on lung injury induced by intestinal ischemia/ reperfusion ( Ⅱ/R). METHODS: The rat model of Ⅱ/R injury was produced by damping the superior mesenteric artery for 60 min followed by reperfusion for 180 min. The rats were randomly allocated into sham, Ⅱ/R, and EGb +Ⅱ/R groups. In EGb +Ⅱ/R group, EGb 761 (100 mg/kg per day) was given via a gastric tube for 7 consecutive days prior to surgery. Rats in Ⅱ/R and sham groups were treated with equal volumes of the vehicle of EGb 761. Lung injury was assessed by light microscopy, wet-todry lung weight ratio (W/D) and pulmonary permeability index (PPT). The levels of malondialdehyde (MDA) and nitrite/nitrate (NO2/NO3), as well as the activities of superoxide dismutase (SOD) and myeloperoxidase (MPO) were examined. Western blot was used to determine the expression of inducible nitric oxide synthase (iNOS). RESULTS: EGb 761 markedly improved mean arterial pressure and attenuated lung injury, manifested by the improvement of histological changes and significant decreases of pulmonary W/D and PPT (P 〈 0.05 or 0.01).Moreover, EGb 761 markedly increased SOD activity, reduced MDA levels and MPO activity, and suppressed NO generation accompanied by down-regulation of iNOS expression (P 〈 0.05 or 0.01). CONCLUSION: The results indicate that EGb 761 has a protective effect on lung injury induced by Ⅱ /R, which may be related to its antioxidant property and suppressions of neutrophil accumulation and iNOS- induced NO generation. EGb 761 seems to be an effective therapeutic agent for critically ill patients with respiratory failure related to Ⅱ/R.展开更多
AIM: To characterize high-mobility group protein 1-toll-like receptor 4(HMGB1-TLR4) and downstream signaling pathways in intestinal ischemia/reperfusion(I/R) injury.METHODS: Forty specific-pathogen-free male C57BL/6 m...AIM: To characterize high-mobility group protein 1-toll-like receptor 4(HMGB1-TLR4) and downstream signaling pathways in intestinal ischemia/reperfusion(I/R) injury.METHODS: Forty specific-pathogen-free male C57BL/6 mice were randomly divided into five groups(n = 8 per group): sham, control, anti-HMGB1, anti-myeloid differentiation gene 88(My D88), and anti-translocatingchain-associating membrane protein(TRIF) antibody groups. Vehicle with the control Ig G antibody, antiHMGB1, anti-My D88, or anti-TRIF antibodies(all 1 mg/kg, 0.025%) were injected via the caudal vein 30 min prior to ischemia. After anesthetization, the abdominal wall was opened and the superior mesenteric artery was exposed, followed by 60 min mesenteric ischemia and then 60 min reperfusion. For the sham group, the abdominal wall was opened for 120 min without I/R. Levels of serum nuclear factor(NF)-κB p65, interleukin(IL)-6, and tumor necrosis factor(TNF)-α were measured, along with myeloperoxidase activity in the lung and liver. Inaddition,morphologic changes that occurred in the lung and intestinal tissues were evaluated. Levels of m RNA transcripts encoding HMGB1 and NF-κB were measured by real-time quantitative PCR, and levels of HMGB1 and NF-κB protein were measured by Western blot. Results were analyzed using one-way analysis of variance.RESULTS: Blocking HMGB 1, MyD 8 8, and TRIF expression by injecting anti-HMGB1, anti-My D88, or anti-TRIF antibodies prior to ischemia reduced the levels of inflammatory cytokines in serum; NF-κB p65: 104.64 ± 11.89, 228.53 ± 24.85, 145.00 ± 33.63, 191.12 ± 13.22, and 183.73 ± 10.81(P < 0.05); IL-6: 50.02 ± 6.33, 104.91 ± 31.18, 62.28 ± 6.73, 85.90 ± 17.37, and 78.14 ± 7.38(P < 0.05); TNF-α, 43.79 ± 4.18, 70.81 ± 6.97, 52.76 ± 5.71, 63.19 ± 5.47, and 59.70 ± 4.63(P < 0.05) for the sham, control, anti-HMGB1, anti-My D88, and anti-TRIF groups, respectively(all in pg/m L).Antibodies also alleviated tissue injury in the lung and small intestine compared with the control group in the mouse intestinal I/R model. The administration of antiHMGB1, anti-My D88, and anti-TRIF antibodies markedly reduced damage caused by I/R, for which anti-HMGB1 antibody had the most obvious effect.CONCLUSION: HMGB1 and its downstream signaling pathway play important roles in the mouse intestinal I/R injury, and the effect of the TRIF-dependent pathway is slightly greater.展开更多
AIM: To investigate the possible protective effects of carnosol on liver injury induced by intestinal ischemia reperfusion (I/R). METHODS: Rats were divided randomly into three experimental groups: sham, intestin...AIM: To investigate the possible protective effects of carnosol on liver injury induced by intestinal ischemia reperfusion (I/R). METHODS: Rats were divided randomly into three experimental groups: sham, intestinal I/R and carnosol treatment (n = 18 each). The intestinal I/R model was established by clamping the superior mesenteric artery for 1 h. In the carnosol treatment group, surgery was performed as in the intestinal I/R group, with intraperitoneal administration of 3 mg/kg carnosol 1 h before the operation. At 2, 4 and 6 h after reperfusion, rats were killed and blood, intestine and liver tissue samples were obtained. Intestine and liver histology was investigated. Serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and interleukin (IL)-6 were measured. Liver tissue superoxide dismutase (SOD) and myeloperoxidase (IvIPO) activity were assayed. The liver intercellular adhesion molecule-1 (ICAM-1) and nuclear factor κB (NF-κB) were determined by immunohistochemical analysis and western blot analysis. RESULTS: Intestinal I/R induced intestine and liver injury, characterized by histological changes, as well as a significant increase in serum AST and ALT levels. The activity of SOD in the liver tissue decreased after I/R, which was enhanced by carnosol pretreatment. In addition, compared with the control group, carnosol markedly reduced liver tissue MPO activity and serum IL-6 level, which was in parallel with the decreased level of liver ICAI-1 and NF-κB expression. CONCLUSION: Our results indicate that carnosol pretreatment attenuates liver injury induced by intestinal I/R, attributable to the antioxidant effect and inhibition of the NF-κB pathway.展开更多
Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cereb...Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury.展开更多
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv...Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.展开更多
BACKGROUND: The nuclear translocation of transcription factors may be a critical factor in the intracellular pathway involved in ischemia/reperfusion(I/R) injury. The aim of the study was to evaluate the role of nucle...BACKGROUND: The nuclear translocation of transcription factors may be a critical factor in the intracellular pathway involved in ischemia/reperfusion(I/R) injury. The aim of the study was to evaluate the role of nuclear factor-kappa B (NF-κB) in the pathogenesis of liver injury induced by intestinal ischemia/reperfusion (IIR) and to investigate the effect of pyrrolidine dithiocarbamate (PDTC) on this liver injury. METHODS: Male Wistar rats were divided randomly into three experimental groups (8 rats in each): sham operation group (control group); intestinal/reperfusion group(I/R group): animals received 1-hour of intestinal ischemia and 2-hour reperfusion; and PDTC treatment group (PDTC group): animals that received I/R subject to PDTC treatment (100 mg/kg). The histological changes in the liver and intestine were observed, and the serum levels of tumor necrosis factor-α (TNF-α), alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver superoxide dismutase (SOD), and nitrite/nitrate (NO) were measured. The immunohistochemical expression and Western blot analysis of liver NF-κB and intercellular adhesion molecule-1(ICAM-1) were observed. RESULTS: IIR induced liver injury characterized by the histological changes of liver edema, hemorrhage, polymorphonuclear neutrophil (PMN) infiltration, and elevated serum levels of AST and ALT. The serum TNF-α level was significantly higher than that of the control group(P<0.01) and a high level of liver oxidant product was observed (P<0.01). These changes were parallel to the positive expression of NF-κB and ICAM-1. After the administration of PDTC, the histological changes after liver injury were improved; the levels of SOD and NO in the liver were elevated and reduced, respectively (P<0.01). The expressions of ICAM-1 and NF-κB in the liver were weakened (P<0.01). CONCLUSION: NF-κB plays an important role in the pathogenesis of liver injury induced by HR. PDTC, an agent known to inhibit the activation of NF-κB, can reduce and prevent this injury.展开更多
BACKGROUND Intestinal barrier breakdown,a frequent complication of intestinal ischemiareperfusion(I/R)including dysfunction and the structure changes of the intestine,is characterized by a loss of tight junction and e...BACKGROUND Intestinal barrier breakdown,a frequent complication of intestinal ischemiareperfusion(I/R)including dysfunction and the structure changes of the intestine,is characterized by a loss of tight junction and enhanced permeability of the intestinal barrier and increased mortality.To develop effective and novel therapeutics is important for the improvement of outcome of patients with intestinal barrier deterioration.Recombinant human angiopoietin-like protein 4(rhANGPTL4)is reported to protect the blood-brain barrier when administered exogenously,and endogenous ANGPTL4 deficiency deteriorates radiationinduced intestinal injury.AIM To identify whether rhANGPTL4 may protect intestinal barrier breakdown induced by I/R.METHODS Intestinal I/R injury was elicited through clamping the superior mesenteric artery for 60 min followed by 240 min reperfusion.Intestinal epithelial(Caco-2)cells and human umbilical vein endothelial cells were challenged by hypoxia/reoxygenation to mimic I/R in vitro.RESULTS Indicators including fluorescein isothiocyanate-conjugated dextran(4 kilodaltons;FD-4)clearance,ratio of phosphorylated myosin light chain/total myosin light chain,myosin light chain kinase and loss of zonula occludens-1,claudin-2 and VE-cadherin were significantly increased after intestinal I/R or cell hypoxia/reoxygenation.rhANGPTL4 treatment significantly reversed these indicators,which were associated with inhibiting the inflammatory and oxidative cascade,excessive activation of cellular autophagy and apoptosis and improvement of survival rate.Similar results were observed in vitro when cells were challenged by hypoxia/reoxygenation,whereas rhANGPTL4 reversed the indicators close to normal level in Caco-2 cells and human umbilical vein endothelial cells significantly.CONCLUSION rhANGPTL4 can function as a protective agent against intestinal injury induced by intestinal I/R and improve survival via maintenance of intestinal barrier structure and functions.展开更多
Objective: The study explored the effect of applying electroacupuncture(EA) preconditioning at ST 36 on mitochondria in rats with intestinal ischemia/reperfusion injury.Methods: Forty SD rats were divided into fou...Objective: The study explored the effect of applying electroacupuncture(EA) preconditioning at ST 36 on mitochondria in rats with intestinal ischemia/reperfusion injury.Methods: Forty SD rats were divided into four sets: sham operation group(sham group); intestinal ischemia/reperfusion group(I/R group); EA preconditioning at ST 36 followed by intestinal ischemia/reperfusion injury(ST 36 + I/R group); EA preconditioning at the lateral site away from ST360.5 cm followed by intestinal ischemia/reperfusion injury(N+I/R group). For the sham group, the rats were opened abdominal cavity for 3 h and 20 min and their abdominal cavities were covered with wet gauze avoiding drying and kept on the thermostat at 37 0 C. For the ischemia/reperfusion(I/R) group,rats were anaesthetised and their abdominal cavities were opened to expose jejunum segments. The segment's collateral blood supply was restricted by bilateral ligation of the intestine. Next, one of the branches of a mesenteric artery was occluded with a thread for 20 min and then the thread was released after such ischemia conditions, keeping reperfusion for 3 h. For the ST36 + I/R group, the electroacupuncture at ST36 was first performed, then the intestinal ischemia/reperfusion model was constructed. For the N + I/R group, electroacupuncture at non ST36 acupoint, which is away from ST36 about 0.5 cm, and then the intestinal ischemia/reperfusion model was performed. Measurements of the levels of inflammatory markers tumour necrosis factor a(TNFa) and interleukin-1 beta(IL-1β), cytochrome c(CYCS), and the mitochondrial membrane pro-apoptotic protein(BAX), anti-apoptotic protein Bcl-2 were performed.Results: Compared to I/R group, the intensity of cytoplasmic CYCS in intestinal tissues was significantly decreased in the ST 36 + I/R group(1.65 vs. 0.18, p〈0.05). Compared to N + I/R group, the intensity of cytoplasmic CYCS in intestinal tissues was also dramatically declined in the ST 36 + I/R group(1.37 vs. 0.18, p〈0.05). The level of CYCS in mitochondria in rats in the ST 36 + I/R group were appreciably increased than those of rats in the I/Rgroup(1.42 vs. 0.06, p〈0.05), and CYCS in mitochondria was also largely expressed in ST36 + I/R group than N + I/R group(1.42 vs. 0.08, p〈0.05). Bcl-2 was shown to be elevated in the ST 36 + I/R group than I/R group(1.01 vs. 0.10) and N + I/R group(1.01 vs. 0.09, all p〈0.05), whereas BAX expression was greatly decreased in the ST36 + I/R group than I/R group(0.11 vs.0.78) and N + I/R group(0.11 vs. 0.87, all p〈0.05).Conclusion: The results suggest the EA intervention has a protective effect upon mitochondria, preventing CYCS release and the subsequent activation of downstream apoptosis pathway. It is proposed that patients due to undergo gastrointestinal surgery get benefit from EA preconditioning at ST 36.展开更多
Intestinal ischemia is a frequently observed phenomenon. Morbidity and mortality rates are extraordinarily high and did not improve over the past decades. This is in part attributable to limited knowledge on the patho...Intestinal ischemia is a frequently observed phenomenon. Morbidity and mortality rates are extraordinarily high and did not improve over the past decades. This is in part attributable to limited knowledge on the pathophysiology of intestinal ischemia-reperfusion(IR) in man, the paucity in preventive and/or therapeutic options and the lack of early diagnostic markers for intestinal ischemia. To improve our knowledge and solve clinically important questions regarding intestinal IR, we developed a human experimental intestinal IR model. With this model, we were able to gain insight into the mechanisms that allow the human gut to withstand short periods of IR without the development of severe inflammatory responses. The purpose of this review is to overview the most relevant recent advances in our understanding of the pathophysiology of human intestinal IR, as well as the(potential) future clinical implications.展开更多
IM To observe the kinetics of D()lactate alteration in both portal and systemic circulations, and its relationship with intestinal injury in rats subjected to acute intestinal ischemiareperfusion.METHODS Anesthetize...IM To observe the kinetics of D()lactate alteration in both portal and systemic circulations, and its relationship with intestinal injury in rats subjected to acute intestinal ischemiareperfusion.METHODS Anesthetized rats underwent 75min superior mesenteric artery occlusion followed by 6hour reperfusion. Plasma D()lactate levels were measured by an enzymatic spectrophotometric assay.RESULTS Intestinal ischemia for 75 min resulted in a significant elevation of D()lactate levels in portal vein as compared with the baseline values (P<005). Plasma D()lactate levels had a tendency to further increase after reperfusion up to 6 hours. Similar alterations in D()lactate were also found in systemic circulation, there were no significant differences between the portal and systemic circulations at any time point. Moreover, the macropathological evaluation scores were significantly correlated to the portal D()lactate levels in animals at various time points (r=0415, P<001). In addition,there was a remarkable rise of endotoxin concentration within the portal vein at the end of 75min ischemia (P<005), reaching a peak at 2 hours postreperfusion.CONCLUSION Acute intestinal ischemia is associated with failure of mucosal barrier resulting in increased plasma D()lactate levels in both portal and systemic blood. The subsequent reperfusion might further increase D()lactate levels, which are correlated to the macropathological alterations. Plasma D()lactate may be a useful marker of intestinal injury following both ischemia and reperfusion insults.展开更多
AIM: To investigate the effect of sulforaphane (SFN) on regulation of NF-E2-related factor-2 (Nrf2)-antiox-idant response element (ARE) pathway in liver injury induced by intestinal ischemia/reperfusion (I/R). METHODS...AIM: To investigate the effect of sulforaphane (SFN) on regulation of NF-E2-related factor-2 (Nrf2)-antiox-idant response element (ARE) pathway in liver injury induced by intestinal ischemia/reperfusion (I/R). METHODS: Rats were divided randomly into four ex-perimental groups: control, SFN control, intestinal I/R and SFN pretreatment groups (n = 8 in each group). The intestinal I/R model was established by clamping the superior mesenteric artery for 1 h and 2 h reperfu-sion. In the SFN pretreatment group, surgery was performed as in the intestinal I/R group, with intraperitoneal administration of 3 mg/kg SFN 1 h before the op-eration. Intestine and liver histology was investigated. Serum levels of aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were measured. Liver tissue superoxide dismutase (SOD), myeloperoxidase (MPO), glutathione (GSH) and glutathione peroxidase (GSH-Px) activity were assayed. The liver transcription factor Nrf2 and heme oxygenase-1 (HO-1) were determined by immunohistochemical analysis and Western blotting analysis.RESULTS: Intestinal I/R induced intestinal and liver injury, characterized by histological changes as well as a signif icant increase in serum AST and ALT levels (AST: 260.13 ± 40.17 U/L vs 186.00 ± 24.21 U/L, P < 0.01; ALT: 139.63 ± 11.35 U/L vs 48.38 ± 10.73 U/L, P < 0.01), all of which were reduced by pretreatment with SFN, respectively (AST: 260.13 ± 40.17 U/L vs 216.63 ± 22.65 U/L, P < 0.05; ALT: 139.63 ± 11.35 U/L vs 97.63 ± 15.56 U/L, P < 0.01). The activity of SOD in the liver tissue decreased after intestinal I/R (P < 0.01), which was enhanced by SFN pretreatment (P < 0.05). In ad-dition, compared with the control group, SFN markedly reduced liver tissue MPO activity (P < 0.05) and elevat-ed liver tissue GSH and GSH-Px activity (P < 0.05, P < 0.05), which was in parallel with the increased level of liver Nrf2 and HO-1 expression.CONCLUSION: SFN pretreatment attenuates liver injury induced by intestinal I/R in rats, attributable to the antioxidant effect through Nrf2-ARE pathway.展开更多
BACKGROUND: Hepatic ischemia/reperfusion injury may induce intestinal microflora imbalance. Salvia miltiorrhiza is effective in promoting blood circulation and counteracting peroxidation in tissues. The aim of the pre...BACKGROUND: Hepatic ischemia/reperfusion injury may induce intestinal microflora imbalance. Salvia miltiorrhiza is effective in promoting blood circulation and counteracting peroxidation in tissues. The aim of the present study was to determine the effects of Salvia miltiorrhiza on intestinal mi- croflora, endotoxemia, and bacterial translocation in rats with hepatic I/R injury. METHODS: Sprague-Dawley rats in specific pathogen free grade were divided into 3 groups: group I(n =6) for sham operation: groups ( n = 7) for liver ische- mia for 20 minutes and reperfusion for 22 hours. Group was also pretreated with 4 ml/day of Salvia miltiorrhiza solu- tion (250 mg/kg) by daily gavage for 7 days. The levels of serum alanine aminotransferase (ALT), aspartate amino- transferase (AST), malondialdehyde ( MDA) and supero- xide dismutase ( SOD ) in liver tissues, serum endotoxin, intestinal bacterial counts, intestinal mucosal histology and bacterial translocation were studied. RESULTS: The levels of ALT, AST, plasma endotoxin and MDA in liver tissues were decreased more markedly in group (57.57 ± 18.08 U/L, 147.57 ±40.84 U/L, 0.42 ± 0.144 EU/ml and 0. 52 ±0.19 nmol/mg-prot respectively) in group 295.9±216.92 U/L, 0.80± 0.262 EU/ml and 0.72±0.12 nmol/mg-prot; P <0.05-0.01 respectively). Liver SOD activity was increased more sig- nificantly in group (318.47±64.62 U/mg-prot) than in group U/mg-prot, P<0.05). The counts of Bifidobacteria and Bacteroides increased more significantly in group than in group but were similar to those in group I. Bacterial translocation to the kidney in group was 50% (5/10), whereas no bacterial translocation to the kidney occurred in the other two groups (P <0. 01). Ileal mucosal structure was markedly ameliorated in group as compared with group CONCLUSIONS: Salviae miltiorrhiza could partially restore intestinal microflora balance, improve intestinal mucosal integrity, and reduce bacterial translocation and plasma en- dotoxin in rats with hepatic ischemia/reperfusion injury.展开更多
AIM: Ischemia/reperfusion (I/R) injury is one of the major obstacles for intestinal transplantation (ITx). Urinary trypsin inhibitor (Ulinastatin, UTI) suppresses proteases and stabilizes lysosomal membranes. We suppo...AIM: Ischemia/reperfusion (I/R) injury is one of the major obstacles for intestinal transplantation (ITx). Urinary trypsin inhibitor (Ulinastatin, UTI) suppresses proteases and stabilizes lysosomal membranes. We supposed that Ulinastatin would diminish I/R injury of intestinal graft.METHODS: UTI- treated group and untreated control group were investigated by histological assessment at 1.5, 4, 24, and 72 h after ITx. Myeloperoxidase (MPO)activity was used as the activity of neutrophils, and malondialdehyde (MDA) was used as an index of lipid peroxidation. TNFα and i-NOS mRNA expression in graft tissue were measured by semi-quantitative RT-PCR.CD11b+ Gr1+ cells in graft lamina propria were analyzed by flow cytometry.RESULTS: Histological scores of the graft showed that the tissue injury was markedly attenuated by UTI treatment at different time points after ITx, with reduced MPO and MDA value in the grafts. The expression of TNFα and i-NOS mRNA was profoundly inhibited, while the infiltration of CD11b+ Gr1+ cells into the intestinal graft was decreased in UTI group.CONCLUSION: Urinary trypsin inhibitor attenuates I/R injury in mouse intestinal transplantation by reducing monocytes infiltration and down-regulation of TNFα and i-NOS mRNA expression.展开更多
AIM: To determine the potential protective role of adiponectin in intestinal ischemia reperfusion(I/R) injury.METHODS: A rat model of intestinal I/R injury was established. The serum level of adiponectin in rats with ...AIM: To determine the potential protective role of adiponectin in intestinal ischemia reperfusion(I/R) injury.METHODS: A rat model of intestinal I/R injury was established. The serum level of adiponectin in rats with intestinal I/R injury was determined by enzymelinked immunosorbent assay(ELISA). The serum levels of interleukin(IL)-1β, IL-6, and tumor necrosis factor(TNF)-α were also measured by ELISA. Apoptosis of intestinal cells was detected using the terminal deoxynucleotidyl transferase d UTP nick end labeling assay. The production of malondialdehyde(MDA) and superoxide dismutase(SOD) and villous injury scores were also measured.RESULTS: Adiponectin was downregulated in the serum of rats with intestinal I/R injury compared with sham rats. No significant changes in the expression of adiponectin receptor 1 and adiponectin receptor 2 were found between sham and I/R rats. Pre-treatment with recombinant adiponectin attenuated intestinal I/R injury. The production of pro-inflammatory cytokines,including IL-6, IL-1β, and TNF-α, in rats with intestinal I/R injury was reduced by adiponectin pre-treatment. The production of MDA was inhibited, and the release of SOD was restored by adiponectin pre-treatment in rats with intestinal I/R injury. Adiponectin pre-treatment also inhibited cell apoptosis in these rats. Treatment with the AMP-activated protein kinase(AMPK) signaling pathway inhibitor, compound C, or the heme oxygenase 1(HO-1) inhibitor, Snpp, attenuated the protective effects of adiponectin against intestinal I/R injury. CONCLUSION: Adiponectin exhibits protective effects against intestinal I/R injury, which may involve the AMPK/HO-1 pathway.展开更多
基金Supported by The Natural Science Foundation of Liaoning Province,No.20042135
文摘AIM: To investigate the role of nuclear factor kappa B (NF-κB) in the pathogenesis of lung injury induced by intestinal ischemia/reperfusion (I/R), and its effect on intercellular adhesion molecule-1 (ICAM-1) expression and neutrophil infiltration. METHODS: Twenty-four Wistar rats were divided randomly into control, I/R and pyrrolidine dithiocarbamate (PDTC) treatment groups, n = 8 in each. I/R group and PDTC treatment group received superior mysenteric artery (SMA) occluding for 1 h and reperfusion for 2 h. PDTC group was administrated with intraperitoneal injection of 2% 100 mg/kg PDTC 1 h before surgery. Lung histology and bronchia alveolus lung fluid (BALF) protein were assayed. Serum IL-6, lung malondialdehyde (MDA) and myeloperoxidase (MPO) as well as the expression level of NF-κB and ICAM-1 were measured.RESULTS: Lung injury induced by intestinal I/R, was characterized by edema, hemorrhage and neutrophil infiltration as well as by the significant rising of BALF protein. Compared to control group, the levels of serum IL-6 and lung MDA and MPO increased significantly in I/R group (P=0.001). Strong positive expression of NF-κB p65 and ICAM-1 was observed. After the administration of PDTC, the level of serum IL-6, lung MDA and MPO as well as NF-κB and ICAM-1 decreased significantly (P〈 0.05) when compared to I/R group.CONCLUSION: The activation of NF-κB plays an important role in the pathogenesis of lung injury induced by intestinal I/R through upregulating the neutrophil infiltration and lung ICAM-1 expression. PDTC as an inhibitor of NF-κB can prevent lung injury induced by intestinal I/R through inhibiting the activity of NF-κB.
基金Supported by National Natural Science Foundation of China No.81270884the 12th Five-Year Plan major project of PLA No.AWS12J001Jiangsu Province’s Key Medical Talent Program of China No.RC2011128
文摘AIM: To investigate the effects of terminal ileostomy on bacterial translocation (BT) and systemic inflammation after intestinal ischemia/reperfusion (I/R) injury in rats.
基金Supported by The National Natural Science Foundation of China,No. 30940069the Natural Sciences Foundation of Beijing,No. 7102127
文摘AIM:To investigate the impact of intestinal ischemia/reperfusion(I/R) injury and lymph drainage on distant organs in rats.METHODS:Thirty-two Sprague-Dawley male rats,weighing 280-320 g,were randomly divided into blank,sham,I/R,and ischemia/reperfusion and drainage(I/R + D) groups(n = 8).All rats were subjected to 60 min ischemia by clamping the superior mesenteric artery,followed by 120 min reperfusion.The rats in the I/R + D group received intestinal lymph drainage for 180 min.In the sham group,the abdominal cavity was opened for 180 min,but the rats received no treatment.The blank group served as a normal and untreated control.A chromogenic limulus assay kit was used for quantita-tive detection of serum endotoxin.The serum concentrations of tumor necrosis factor-α(TNF-α),interleukin(IL)-6,IL-1β,soluble cell adhesion molecules(sICAM-1),and high mobility group protein box 1(HMGB1) were determined with an enzyme-linked immunosorbent assay kit.Histological evaluations of the intestine,liver,kidney,and lung were performed by hematoxylin and eosin staining and immunohistochemistry.HMGB1 protein expression was assayed by western blot analysis.RESULTS:The serum levels of endotoxin and HMGB1 in the I/R and I/R + D groups were significantly higher than those in the sham group(endotoxin,I/R and I/R + D vs sham:0.033 ± 0.004 EU/mL,0.024 ± 0.003 EU/mL vs 0.017 ± 0.009 EU/mL,respectively,P < 0.05;HMGB1,I/R and I/R + D vs sham:5.473 ± 0.963 EU/mL,4.906 ± 0.552 EU/mL vs 0.476 ± 0.406 EU/mL,respectively,P < 0.05).In addition,endotoxin and HMGB1 were significantly lower in the I/R + D group compared to the I/R group(P < 0.05).The serum inflammatory factors IL-6,IL-1β,and sICAM-1 in the I/R and I/R + D groups were significantly higher than those in the sham group(IL-6,I/R and I/R + D vs sham:41.773 ± 9.753 pg/mL,19.204 ± 4.136 pg/mL vs 11.566 ± 2.973 pg/mL,respectively,P < 0.05;IL-1β,I/R and I/R + D vs sham:144.646 ± 29.378 pg/mL,65.829 ± 10.888 pg/mL vs 38.178 ± 7.157 pg/mL,respectively,P < 0.05;sICAM-1,I/R and I/R + D vs sham:97.360 ± 12.714 ng/mL,48.401 ± 6.547 ng/mL vs 33.073 ± 5.957 ng/mL,respectively;P < 0.05).The serum TNF-α in the I/R group were significantly higher than in the sham group(45.863 ± 11.553 pg/mL vs 18.863 ± 6.679 pg/mL,respectively,P < 0.05).These factors were significantly lower in the I/R + D group compared to the I/R group(P < 0.05).The HMGB1 immunohistochemical staining results showed no staining or apparent injury in the blank group,and slight staining at the top of the microvillus was detected in the sham group.In the I/R group,both the top of villi and the basement membrane were stained for HMGB1 in most areas,and injury in the I/R + D group was less than that in the I/R group.HMGB1 expression in the liver,kidney,and lung of rats in the I/R + D group was significantly lower than the rats in the I/R group(P < 0.05).CONCLUSION:Lymph drainage could block the "gutlymph" pathway,improve intestinal barrier function,and attenuate distant organ injury incurred by intestinal I/R.
基金Supported by the National Natural Science Foundation of China,No.81600446Natural Science Foundation of Liaoning Province,China,No.201102048Natural Science Foundation of Dalian Medical Association,No.w SJ/KJC-01-JL-01
文摘AIM To evaluate whether fish oil(FO) can protect liver injury induced by intestinal ischemia/reperfusion(I/R) via the AMPK/SIRT-1/autophagy pathway.METHODS Ischemia in wistar rats was induced by superior mesenteric artery occlusion for 60 min and reperfusion for 240 min. One milliliter per day of FO emulsion or normal saline was administered by intraperitoneal injection for 5 consecutive days to each animal. Animals were sacrificed at the end of reperfusion. Blood andtissue samples were collected for analyses. AMPK, SIRT-1, and Beclin-1 expression was determined in lipopolysaccharide(LPS)-stimulated HepG2 cells with or without FO emulsion treatment.RESULTS Intestinal I/R induced significant liver morphological changes and increased serum alanine aminotransferase and aspartate aminotransferase levels. Expression of p-AMPK/AMPK, SIRT-1, and autophagy markers was decreased whereas tumor necrosis factor-α(TNF-α) and malonaldehyde(MDA) were increased. FO emulsion blocked the changes of the above indicators effectively. Besides, in LPS-stimulated HepG2 cells, small interfering RNA(siRNA) targeting AMPK impaired the FO induced increase of p-AMPK, SIRT-1, and Beclin-1 and decrease of TNF-α and MDA. SIRT-1 siRNA impaired the increase of SIRT-1 and Beclin-1 and the decrease of TNF-α and MDA.CONCLUSION Our study indicates that FO may protect the liver against intestinal I/R induced injury through the AMPK/SIRT-1/autophagy pathway.
文摘Intestinal ischemia is a severe disorder with a variety of causes.Reperfusion is a common occurrence during treatment of acute intestinal ischemia but the injury resulting from ischemia/reperfusion(IR)may lead toeven more serious complications from intestinal atrophy to multiple organ failure and death.The susceptibility of the intestine to IR-induced injury(IRI)appears from various experimental studies and clinical settings such as cardiac and major vascular surgery and organ transplantation.Where as oxygen free radicals,activation of leukocytes,failure of microvascular perfusion,cellular acidosis and disturbance of intracellular homeo-stasis have been implicated as important factors inthe pathogenesis of intestinal IRI,the mechanisms underlying this disorder are not well known.To date,increasing attention is being paid in animal studies to potential pre-and post-ischemia treatments that protect against intestinal IRI such as drug interference with IR-induced apoptosis and inflammation processes and ischemic pre-conditioning.However,better insight is needed into the molecular and cellular events associated with reperfusion-induced damage to develop effective clinical protection protocols to combat this disorder.In this respect,the use of ischemic post-conditioning in combination with experimentally prolonged acidosis blocking deleterious reperfusion actions may turn out to have particular clinical relevance.
文摘AIM: To investigate the effects of ketamine anesthesia on the motility alterations and tissue injury caused by ischemia/reperfusion in rats. METHODS: Thirty male Wistar rats weighing 200-250 g were used. Ischemia was induced by ob-structing blood flow in 25% of the total small intesti-nal length (ileum) with a vascular clamp for 45 min, after which either 60 min or 24 h of reperfusion was allowed. Rats were either anesthetized with pento-barbital sodium (50 mg/kg) or ketamine (100 mg/kg). Control groups received sham surgery. After 60 min of reperfusion, the intestine was examined for mor-phological alterations, and after 24 h intestinal basic electrical rhythm (BER) frequency was calculated, and intestinal transit determined in all groups. RESULTS: The intestinal mucosa in rats that were anesthetized with ketamine showed moderate altera-tions such as epithelial lifting, while ulceration and hemorrhage was observed in rats that received pento-barbital sodium after 60 min of reperfusion. Quantita-tive analysis of structural damage using the Chiu scaleshowed significantly less injury in rats that received ketamine than in rats that did not (2.35 ± 1.14 vs 4.58 ± 0.50, P < 0.0001). The distance traveled by a mark-er, expressed as percentage of total intestinal length, in rats that received pentobarbital sodium was 20% ± 2% in comparison with 25.9% ± 1.64% in rats that re-ceived ketamine (P = 0.017). BER was not statistically different between groups. CONCLUSION: Our results show that ketamine anesthesia is associated with diminished intestinal injury and abolishes the intestinal transit delay induced by ischemia/reperfusion.
基金Supported by grants from the Administration of Traditional Chinese Medicine of Guangdong Province, China, No. 1040066 Natural Science Foundation of Guangdong Province, China, No. 05300758 National Natural Science Foundation of China, No. 30672021
文摘AIM: To investigate the effect of ginkgo biloba extract (EGb 761) on lung injury induced by intestinal ischemia/ reperfusion ( Ⅱ/R). METHODS: The rat model of Ⅱ/R injury was produced by damping the superior mesenteric artery for 60 min followed by reperfusion for 180 min. The rats were randomly allocated into sham, Ⅱ/R, and EGb +Ⅱ/R groups. In EGb +Ⅱ/R group, EGb 761 (100 mg/kg per day) was given via a gastric tube for 7 consecutive days prior to surgery. Rats in Ⅱ/R and sham groups were treated with equal volumes of the vehicle of EGb 761. Lung injury was assessed by light microscopy, wet-todry lung weight ratio (W/D) and pulmonary permeability index (PPT). The levels of malondialdehyde (MDA) and nitrite/nitrate (NO2/NO3), as well as the activities of superoxide dismutase (SOD) and myeloperoxidase (MPO) were examined. Western blot was used to determine the expression of inducible nitric oxide synthase (iNOS). RESULTS: EGb 761 markedly improved mean arterial pressure and attenuated lung injury, manifested by the improvement of histological changes and significant decreases of pulmonary W/D and PPT (P 〈 0.05 or 0.01).Moreover, EGb 761 markedly increased SOD activity, reduced MDA levels and MPO activity, and suppressed NO generation accompanied by down-regulation of iNOS expression (P 〈 0.05 or 0.01). CONCLUSION: The results indicate that EGb 761 has a protective effect on lung injury induced by Ⅱ /R, which may be related to its antioxidant property and suppressions of neutrophil accumulation and iNOS- induced NO generation. EGb 761 seems to be an effective therapeutic agent for critically ill patients with respiratory failure related to Ⅱ/R.
基金Supported by National Natural Science Foundation of China,No.30940069the Natural Sciences Foundation of Beijing,No.7102127
文摘AIM: To characterize high-mobility group protein 1-toll-like receptor 4(HMGB1-TLR4) and downstream signaling pathways in intestinal ischemia/reperfusion(I/R) injury.METHODS: Forty specific-pathogen-free male C57BL/6 mice were randomly divided into five groups(n = 8 per group): sham, control, anti-HMGB1, anti-myeloid differentiation gene 88(My D88), and anti-translocatingchain-associating membrane protein(TRIF) antibody groups. Vehicle with the control Ig G antibody, antiHMGB1, anti-My D88, or anti-TRIF antibodies(all 1 mg/kg, 0.025%) were injected via the caudal vein 30 min prior to ischemia. After anesthetization, the abdominal wall was opened and the superior mesenteric artery was exposed, followed by 60 min mesenteric ischemia and then 60 min reperfusion. For the sham group, the abdominal wall was opened for 120 min without I/R. Levels of serum nuclear factor(NF)-κB p65, interleukin(IL)-6, and tumor necrosis factor(TNF)-α were measured, along with myeloperoxidase activity in the lung and liver. Inaddition,morphologic changes that occurred in the lung and intestinal tissues were evaluated. Levels of m RNA transcripts encoding HMGB1 and NF-κB were measured by real-time quantitative PCR, and levels of HMGB1 and NF-κB protein were measured by Western blot. Results were analyzed using one-way analysis of variance.RESULTS: Blocking HMGB 1, MyD 8 8, and TRIF expression by injecting anti-HMGB1, anti-My D88, or anti-TRIF antibodies prior to ischemia reduced the levels of inflammatory cytokines in serum; NF-κB p65: 104.64 ± 11.89, 228.53 ± 24.85, 145.00 ± 33.63, 191.12 ± 13.22, and 183.73 ± 10.81(P < 0.05); IL-6: 50.02 ± 6.33, 104.91 ± 31.18, 62.28 ± 6.73, 85.90 ± 17.37, and 78.14 ± 7.38(P < 0.05); TNF-α, 43.79 ± 4.18, 70.81 ± 6.97, 52.76 ± 5.71, 63.19 ± 5.47, and 59.70 ± 4.63(P < 0.05) for the sham, control, anti-HMGB1, anti-My D88, and anti-TRIF groups, respectively(all in pg/m L).Antibodies also alleviated tissue injury in the lung and small intestine compared with the control group in the mouse intestinal I/R model. The administration of antiHMGB1, anti-My D88, and anti-TRIF antibodies markedly reduced damage caused by I/R, for which anti-HMGB1 antibody had the most obvious effect.CONCLUSION: HMGB1 and its downstream signaling pathway play important roles in the mouse intestinal I/R injury, and the effect of the TRIF-dependent pathway is slightly greater.
基金Supported by The grants from the Dalian Scientific Research Foundation,No.2004 B3SF 143,No.2007 J21JH006National Natural Science Foundation,No.30872449
文摘AIM: To investigate the possible protective effects of carnosol on liver injury induced by intestinal ischemia reperfusion (I/R). METHODS: Rats were divided randomly into three experimental groups: sham, intestinal I/R and carnosol treatment (n = 18 each). The intestinal I/R model was established by clamping the superior mesenteric artery for 1 h. In the carnosol treatment group, surgery was performed as in the intestinal I/R group, with intraperitoneal administration of 3 mg/kg carnosol 1 h before the operation. At 2, 4 and 6 h after reperfusion, rats were killed and blood, intestine and liver tissue samples were obtained. Intestine and liver histology was investigated. Serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and interleukin (IL)-6 were measured. Liver tissue superoxide dismutase (SOD) and myeloperoxidase (IvIPO) activity were assayed. The liver intercellular adhesion molecule-1 (ICAM-1) and nuclear factor κB (NF-κB) were determined by immunohistochemical analysis and western blot analysis. RESULTS: Intestinal I/R induced intestine and liver injury, characterized by histological changes, as well as a significant increase in serum AST and ALT levels. The activity of SOD in the liver tissue decreased after I/R, which was enhanced by carnosol pretreatment. In addition, compared with the control group, carnosol markedly reduced liver tissue MPO activity and serum IL-6 level, which was in parallel with the decreased level of liver ICAI-1 and NF-κB expression. CONCLUSION: Our results indicate that carnosol pretreatment attenuates liver injury induced by intestinal I/R, attributable to the antioxidant effect and inhibition of the NF-κB pathway.
基金supported by the National Natural Science Foundation of China,Nos.82260245(to YX),81660207(to YX),81960253(to YL),82160268(to YL),U1812403(to ZG)Science and Technology Projects of Guizhou Province,Nos.[2019]1440(to YX),[2020]1Z067(to WH)+1 种基金Cultivation Foundation of Guizhou Medical University,No.[20NSP069](to YX)Excellent Young Talents Plan of Guizhou Medical University,No.(2022)101(to WH)。
文摘Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury.
基金supported by the Natural Science Foundation of Shandong Province,No.ZR2023MC168the National Natural Science Foundation of China,No.31670989the Key R&D Program of Shandong Province,No.2019GSF107037(all to CS).
文摘Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.
文摘BACKGROUND: The nuclear translocation of transcription factors may be a critical factor in the intracellular pathway involved in ischemia/reperfusion(I/R) injury. The aim of the study was to evaluate the role of nuclear factor-kappa B (NF-κB) in the pathogenesis of liver injury induced by intestinal ischemia/reperfusion (IIR) and to investigate the effect of pyrrolidine dithiocarbamate (PDTC) on this liver injury. METHODS: Male Wistar rats were divided randomly into three experimental groups (8 rats in each): sham operation group (control group); intestinal/reperfusion group(I/R group): animals received 1-hour of intestinal ischemia and 2-hour reperfusion; and PDTC treatment group (PDTC group): animals that received I/R subject to PDTC treatment (100 mg/kg). The histological changes in the liver and intestine were observed, and the serum levels of tumor necrosis factor-α (TNF-α), alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver superoxide dismutase (SOD), and nitrite/nitrate (NO) were measured. The immunohistochemical expression and Western blot analysis of liver NF-κB and intercellular adhesion molecule-1(ICAM-1) were observed. RESULTS: IIR induced liver injury characterized by the histological changes of liver edema, hemorrhage, polymorphonuclear neutrophil (PMN) infiltration, and elevated serum levels of AST and ALT. The serum TNF-α level was significantly higher than that of the control group(P<0.01) and a high level of liver oxidant product was observed (P<0.01). These changes were parallel to the positive expression of NF-κB and ICAM-1. After the administration of PDTC, the histological changes after liver injury were improved; the levels of SOD and NO in the liver were elevated and reduced, respectively (P<0.01). The expressions of ICAM-1 and NF-κB in the liver were weakened (P<0.01). CONCLUSION: NF-κB plays an important role in the pathogenesis of liver injury induced by HR. PDTC, an agent known to inhibit the activation of NF-κB, can reduce and prevent this injury.
基金the National Natural Science Foundation of China,No.81600446the Science and Technology of Traditional Chinese Medicine Foundation in Qingdao,No.2021-zyyz03the Science and technology development of Medicine and health Foundation in Shandong Province,China,No.202004010508.
文摘BACKGROUND Intestinal barrier breakdown,a frequent complication of intestinal ischemiareperfusion(I/R)including dysfunction and the structure changes of the intestine,is characterized by a loss of tight junction and enhanced permeability of the intestinal barrier and increased mortality.To develop effective and novel therapeutics is important for the improvement of outcome of patients with intestinal barrier deterioration.Recombinant human angiopoietin-like protein 4(rhANGPTL4)is reported to protect the blood-brain barrier when administered exogenously,and endogenous ANGPTL4 deficiency deteriorates radiationinduced intestinal injury.AIM To identify whether rhANGPTL4 may protect intestinal barrier breakdown induced by I/R.METHODS Intestinal I/R injury was elicited through clamping the superior mesenteric artery for 60 min followed by 240 min reperfusion.Intestinal epithelial(Caco-2)cells and human umbilical vein endothelial cells were challenged by hypoxia/reoxygenation to mimic I/R in vitro.RESULTS Indicators including fluorescein isothiocyanate-conjugated dextran(4 kilodaltons;FD-4)clearance,ratio of phosphorylated myosin light chain/total myosin light chain,myosin light chain kinase and loss of zonula occludens-1,claudin-2 and VE-cadherin were significantly increased after intestinal I/R or cell hypoxia/reoxygenation.rhANGPTL4 treatment significantly reversed these indicators,which were associated with inhibiting the inflammatory and oxidative cascade,excessive activation of cellular autophagy and apoptosis and improvement of survival rate.Similar results were observed in vitro when cells were challenged by hypoxia/reoxygenation,whereas rhANGPTL4 reversed the indicators close to normal level in Caco-2 cells and human umbilical vein endothelial cells significantly.CONCLUSION rhANGPTL4 can function as a protective agent against intestinal injury induced by intestinal I/R and improve survival via maintenance of intestinal barrier structure and functions.
基金supported by a grant from the National Natural Science Foundation of Hubei Province of China(Grant no.2017CFB384)
文摘Objective: The study explored the effect of applying electroacupuncture(EA) preconditioning at ST 36 on mitochondria in rats with intestinal ischemia/reperfusion injury.Methods: Forty SD rats were divided into four sets: sham operation group(sham group); intestinal ischemia/reperfusion group(I/R group); EA preconditioning at ST 36 followed by intestinal ischemia/reperfusion injury(ST 36 + I/R group); EA preconditioning at the lateral site away from ST360.5 cm followed by intestinal ischemia/reperfusion injury(N+I/R group). For the sham group, the rats were opened abdominal cavity for 3 h and 20 min and their abdominal cavities were covered with wet gauze avoiding drying and kept on the thermostat at 37 0 C. For the ischemia/reperfusion(I/R) group,rats were anaesthetised and their abdominal cavities were opened to expose jejunum segments. The segment's collateral blood supply was restricted by bilateral ligation of the intestine. Next, one of the branches of a mesenteric artery was occluded with a thread for 20 min and then the thread was released after such ischemia conditions, keeping reperfusion for 3 h. For the ST36 + I/R group, the electroacupuncture at ST36 was first performed, then the intestinal ischemia/reperfusion model was constructed. For the N + I/R group, electroacupuncture at non ST36 acupoint, which is away from ST36 about 0.5 cm, and then the intestinal ischemia/reperfusion model was performed. Measurements of the levels of inflammatory markers tumour necrosis factor a(TNFa) and interleukin-1 beta(IL-1β), cytochrome c(CYCS), and the mitochondrial membrane pro-apoptotic protein(BAX), anti-apoptotic protein Bcl-2 were performed.Results: Compared to I/R group, the intensity of cytoplasmic CYCS in intestinal tissues was significantly decreased in the ST 36 + I/R group(1.65 vs. 0.18, p〈0.05). Compared to N + I/R group, the intensity of cytoplasmic CYCS in intestinal tissues was also dramatically declined in the ST 36 + I/R group(1.37 vs. 0.18, p〈0.05). The level of CYCS in mitochondria in rats in the ST 36 + I/R group were appreciably increased than those of rats in the I/Rgroup(1.42 vs. 0.06, p〈0.05), and CYCS in mitochondria was also largely expressed in ST36 + I/R group than N + I/R group(1.42 vs. 0.08, p〈0.05). Bcl-2 was shown to be elevated in the ST 36 + I/R group than I/R group(1.01 vs. 0.10) and N + I/R group(1.01 vs. 0.09, all p〈0.05), whereas BAX expression was greatly decreased in the ST36 + I/R group than I/R group(0.11 vs.0.78) and N + I/R group(0.11 vs. 0.87, all p〈0.05).Conclusion: The results suggest the EA intervention has a protective effect upon mitochondria, preventing CYCS release and the subsequent activation of downstream apoptosis pathway. It is proposed that patients due to undergo gastrointestinal surgery get benefit from EA preconditioning at ST 36.
基金Supported by Dutch Gastroenterology and Hepatology Society(MLDS grant WO10-57 to Dejong CHC and Lenaerts K)Career Development Grant CDG(to Derikx JPM)The Netherlands Organisation for Scientific Research(Rubicon grant 825.13.012 to Grootjans J)
文摘Intestinal ischemia is a frequently observed phenomenon. Morbidity and mortality rates are extraordinarily high and did not improve over the past decades. This is in part attributable to limited knowledge on the pathophysiology of intestinal ischemia-reperfusion(IR) in man, the paucity in preventive and/or therapeutic options and the lack of early diagnostic markers for intestinal ischemia. To improve our knowledge and solve clinically important questions regarding intestinal IR, we developed a human experimental intestinal IR model. With this model, we were able to gain insight into the mechanisms that allow the human gut to withstand short periods of IR without the development of severe inflammatory responses. The purpose of this review is to overview the most relevant recent advances in our understanding of the pathophysiology of human intestinal IR, as well as the(potential) future clinical implications.
文摘IM To observe the kinetics of D()lactate alteration in both portal and systemic circulations, and its relationship with intestinal injury in rats subjected to acute intestinal ischemiareperfusion.METHODS Anesthetized rats underwent 75min superior mesenteric artery occlusion followed by 6hour reperfusion. Plasma D()lactate levels were measured by an enzymatic spectrophotometric assay.RESULTS Intestinal ischemia for 75 min resulted in a significant elevation of D()lactate levels in portal vein as compared with the baseline values (P<005). Plasma D()lactate levels had a tendency to further increase after reperfusion up to 6 hours. Similar alterations in D()lactate were also found in systemic circulation, there were no significant differences between the portal and systemic circulations at any time point. Moreover, the macropathological evaluation scores were significantly correlated to the portal D()lactate levels in animals at various time points (r=0415, P<001). In addition,there was a remarkable rise of endotoxin concentration within the portal vein at the end of 75min ischemia (P<005), reaching a peak at 2 hours postreperfusion.CONCLUSION Acute intestinal ischemia is associated with failure of mucosal barrier resulting in increased plasma D()lactate levels in both portal and systemic blood. The subsequent reperfusion might further increase D()lactate levels, which are correlated to the macropathological alterations. Plasma D()lactate may be a useful marker of intestinal injury following both ischemia and reperfusion insults.
基金Supported by The grants of Chinese National Natural Science Foundation, No. 30872449the grants of the Dalian Scientific Research Foundation, No. 2008E13SF217
文摘AIM: To investigate the effect of sulforaphane (SFN) on regulation of NF-E2-related factor-2 (Nrf2)-antiox-idant response element (ARE) pathway in liver injury induced by intestinal ischemia/reperfusion (I/R). METHODS: Rats were divided randomly into four ex-perimental groups: control, SFN control, intestinal I/R and SFN pretreatment groups (n = 8 in each group). The intestinal I/R model was established by clamping the superior mesenteric artery for 1 h and 2 h reperfu-sion. In the SFN pretreatment group, surgery was performed as in the intestinal I/R group, with intraperitoneal administration of 3 mg/kg SFN 1 h before the op-eration. Intestine and liver histology was investigated. Serum levels of aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were measured. Liver tissue superoxide dismutase (SOD), myeloperoxidase (MPO), glutathione (GSH) and glutathione peroxidase (GSH-Px) activity were assayed. The liver transcription factor Nrf2 and heme oxygenase-1 (HO-1) were determined by immunohistochemical analysis and Western blotting analysis.RESULTS: Intestinal I/R induced intestinal and liver injury, characterized by histological changes as well as a signif icant increase in serum AST and ALT levels (AST: 260.13 ± 40.17 U/L vs 186.00 ± 24.21 U/L, P < 0.01; ALT: 139.63 ± 11.35 U/L vs 48.38 ± 10.73 U/L, P < 0.01), all of which were reduced by pretreatment with SFN, respectively (AST: 260.13 ± 40.17 U/L vs 216.63 ± 22.65 U/L, P < 0.05; ALT: 139.63 ± 11.35 U/L vs 97.63 ± 15.56 U/L, P < 0.01). The activity of SOD in the liver tissue decreased after intestinal I/R (P < 0.01), which was enhanced by SFN pretreatment (P < 0.05). In ad-dition, compared with the control group, SFN markedly reduced liver tissue MPO activity (P < 0.05) and elevat-ed liver tissue GSH and GSH-Px activity (P < 0.05, P < 0.05), which was in parallel with the increased level of liver Nrf2 and HO-1 expression.CONCLUSION: SFN pretreatment attenuates liver injury induced by intestinal I/R in rats, attributable to the antioxidant effect through Nrf2-ARE pathway.
基金This study was supported by grants from the NationalBasic Research Program (973) of China ( No. 2003CB515506),Postdoctoral Fund of China (20040350233), and Research Grantawarded by the First Affiliated Hospital, Zhejiang UniversitySchool of Medicine, Hangzhou, China.
文摘BACKGROUND: Hepatic ischemia/reperfusion injury may induce intestinal microflora imbalance. Salvia miltiorrhiza is effective in promoting blood circulation and counteracting peroxidation in tissues. The aim of the present study was to determine the effects of Salvia miltiorrhiza on intestinal mi- croflora, endotoxemia, and bacterial translocation in rats with hepatic I/R injury. METHODS: Sprague-Dawley rats in specific pathogen free grade were divided into 3 groups: group I(n =6) for sham operation: groups ( n = 7) for liver ische- mia for 20 minutes and reperfusion for 22 hours. Group was also pretreated with 4 ml/day of Salvia miltiorrhiza solu- tion (250 mg/kg) by daily gavage for 7 days. The levels of serum alanine aminotransferase (ALT), aspartate amino- transferase (AST), malondialdehyde ( MDA) and supero- xide dismutase ( SOD ) in liver tissues, serum endotoxin, intestinal bacterial counts, intestinal mucosal histology and bacterial translocation were studied. RESULTS: The levels of ALT, AST, plasma endotoxin and MDA in liver tissues were decreased more markedly in group (57.57 ± 18.08 U/L, 147.57 ±40.84 U/L, 0.42 ± 0.144 EU/ml and 0. 52 ±0.19 nmol/mg-prot respectively) in group 295.9±216.92 U/L, 0.80± 0.262 EU/ml and 0.72±0.12 nmol/mg-prot; P <0.05-0.01 respectively). Liver SOD activity was increased more sig- nificantly in group (318.47±64.62 U/mg-prot) than in group U/mg-prot, P<0.05). The counts of Bifidobacteria and Bacteroides increased more significantly in group than in group but were similar to those in group I. Bacterial translocation to the kidney in group was 50% (5/10), whereas no bacterial translocation to the kidney occurred in the other two groups (P <0. 01). Ileal mucosal structure was markedly ameliorated in group as compared with group CONCLUSIONS: Salviae miltiorrhiza could partially restore intestinal microflora balance, improve intestinal mucosal integrity, and reduce bacterial translocation and plasma en- dotoxin in rats with hepatic ischemia/reperfusion injury.
基金Supported by the Health Scientific Grant 2002 of Zhejiang Province,China. No. 2002ZX021
文摘AIM: Ischemia/reperfusion (I/R) injury is one of the major obstacles for intestinal transplantation (ITx). Urinary trypsin inhibitor (Ulinastatin, UTI) suppresses proteases and stabilizes lysosomal membranes. We supposed that Ulinastatin would diminish I/R injury of intestinal graft.METHODS: UTI- treated group and untreated control group were investigated by histological assessment at 1.5, 4, 24, and 72 h after ITx. Myeloperoxidase (MPO)activity was used as the activity of neutrophils, and malondialdehyde (MDA) was used as an index of lipid peroxidation. TNFα and i-NOS mRNA expression in graft tissue were measured by semi-quantitative RT-PCR.CD11b+ Gr1+ cells in graft lamina propria were analyzed by flow cytometry.RESULTS: Histological scores of the graft showed that the tissue injury was markedly attenuated by UTI treatment at different time points after ITx, with reduced MPO and MDA value in the grafts. The expression of TNFα and i-NOS mRNA was profoundly inhibited, while the infiltration of CD11b+ Gr1+ cells into the intestinal graft was decreased in UTI group.CONCLUSION: Urinary trypsin inhibitor attenuates I/R injury in mouse intestinal transplantation by reducing monocytes infiltration and down-regulation of TNFα and i-NOS mRNA expression.
文摘AIM: To determine the potential protective role of adiponectin in intestinal ischemia reperfusion(I/R) injury.METHODS: A rat model of intestinal I/R injury was established. The serum level of adiponectin in rats with intestinal I/R injury was determined by enzymelinked immunosorbent assay(ELISA). The serum levels of interleukin(IL)-1β, IL-6, and tumor necrosis factor(TNF)-α were also measured by ELISA. Apoptosis of intestinal cells was detected using the terminal deoxynucleotidyl transferase d UTP nick end labeling assay. The production of malondialdehyde(MDA) and superoxide dismutase(SOD) and villous injury scores were also measured.RESULTS: Adiponectin was downregulated in the serum of rats with intestinal I/R injury compared with sham rats. No significant changes in the expression of adiponectin receptor 1 and adiponectin receptor 2 were found between sham and I/R rats. Pre-treatment with recombinant adiponectin attenuated intestinal I/R injury. The production of pro-inflammatory cytokines,including IL-6, IL-1β, and TNF-α, in rats with intestinal I/R injury was reduced by adiponectin pre-treatment. The production of MDA was inhibited, and the release of SOD was restored by adiponectin pre-treatment in rats with intestinal I/R injury. Adiponectin pre-treatment also inhibited cell apoptosis in these rats. Treatment with the AMP-activated protein kinase(AMPK) signaling pathway inhibitor, compound C, or the heme oxygenase 1(HO-1) inhibitor, Snpp, attenuated the protective effects of adiponectin against intestinal I/R injury. CONCLUSION: Adiponectin exhibits protective effects against intestinal I/R injury, which may involve the AMPK/HO-1 pathway.