Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cereb...Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury.展开更多
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv...Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.展开更多
AIM: To investigate the effects of Cromolyn Sodium (CS) pretreated prior to reperfusion on the activity of intestinal mucosal mast cells (IMMC) and mucous membrane of the small intestine in ischemia-reperfusion (IR) i...AIM: To investigate the effects of Cromolyn Sodium (CS) pretreated prior to reperfusion on the activity of intestinal mucosal mast cells (IMMC) and mucous membrane of the small intestine in ischemia-reperfusion (IR) injury of rats. METHODS: Thirty-two Sprague-Dawley (SD) rats were randomly divided into four groups: sham group (group S), model group (group M), high and low dosage of CS groups, (treated with CS 50 mg/kg or 25 mg/kg, group C1 and C2). Intestinal IR damage was induced by clamping the superior mesenteric artery for 45 min followed by reperfusion for 60 min. CS was intravenouly administrated 15 min before reperfusion. Ultrastructure and counts of IMMC, intestinal structure, the expression of tryptase, levels of malondisldehyde (MDA), TNF-α, histamine and superoxide dismutase (SOD) activity of the small intestine were detected at the end of experiment. RESULTS: The degranulation of IMMC was seen in group M and was attenuated by CS treatment. Chiu’s score of group M was higher than the other groups. CS could attenuate the up-regulation of the Chiu’s score, the levels of MDA, TNF-α, and expression of tryptase and the down-regulation of SOD activity and histamine concentration. The Chiu’s score and MDA content were negatively correlated, while SOD activity was positively correlated to the histamine concentration respectively in the IR groups. CONCLUSION: Pretreated of CS prior to reperfusion protects the small intestine mucous from ischemia- reperfusion damage, the mechanism is inhibited IMMC from degranulation.展开更多
AIM To investigate viability assessment of segmental small bowel ischemia/reperfusion in a porcine model.METHODS In 15 pigs, five or six 30-cm segments of jejunum were simultaneously made ischemic by clamping the mese...AIM To investigate viability assessment of segmental small bowel ischemia/reperfusion in a porcine model.METHODS In 15 pigs, five or six 30-cm segments of jejunum were simultaneously made ischemic by clamping the mesenteric arteries and veins for 1 to 16 h. Reperfusion was initiated after different intervals of ischemia(1-8 h) and subsequently monitored for 5-15 h. The intestinal segments were regularly photographed and assessed visually and by palpation. Intraluminal lactate and glycerol concentrations were measured by microdialysis, and samples were collected for light microscopy and transmission electron microscopy. The histological changes were described and graded.RESULTS Using light microscopy, the jejunum was considered as viable until 6 h of ischemia, while with transmission electron microscopy the ischemic muscularis propria was considered viable until 5 h of ischemia. However, following ≥ 1 h of reperfusion, only segments that had been ischemic for ≤ 3 h appeared viable, suggesting a possible upper limit for viability in the porcine mesenteric occlusion model. Although intraluminal microdialysis allowed us to closely monitor the onset and duration of ischemia and the onset of reperfusion, we were unable to find sufficient level of association between tissue viability and metabolic markers to conclude that microdialysis is clinically relevant for viability assessment. Evaluation of color and motility appears to be poor indicators of intestinal viability.CONCLUSION Three hours of total ischemia of the small bowel followed by reperfusion appears to be the upper limit for viability in this porcine mesenteric ischemia model.展开更多
Summary: The role of nuclear factor kappaB in intestine injury induced by hepatic ischemia reperfusion was investigated. Eighteen male Wistar rats were divided into 3 groups randomly: sham operation group (group A), h...Summary: The role of nuclear factor kappaB in intestine injury induced by hepatic ischemia reperfusion was investigated. Eighteen male Wistar rats were divided into 3 groups randomly: sham operation group (group A), hepatic ischemia reperfusion group (group B) and hepatic ischemia reperfusion plus pyrrolidine dithiocarbamate (PDTC) group (group C). The rats in group A were only subjected to laparotomy, those in group B underwent partial hepatic ischemia reperfusion (ischemia for 1 h and reperfusion for 2 h) and those in group C underwent the same procedure as that of group B but received PDTC 200 mg/kg i.v. before and after ischemia. After reperfusion, tissues of jejunum and venous blood were obtained for measurement of TNF-α, MDA and MPO. The levels of TNF-α in jejunum and venous blood, the levels of MPO in jejunum in group B were significantly higher than those in group A and group C (P<0.05). There was no significant different in the levels of MDA between group B and group C. The severity of histological intestinal injury in group B and group C was similar. Hepatic ischemia reperfusion caused intestine injury, NF-kappaB may play an important role in this course and the targeting of upstream components of the inflammatory response, such as NF-kappaB, may have important therapeutic applications.展开更多
β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unkno...β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.展开更多
Background:The Mongolian gerbil is an excellent laboratory animal for preparing the cerebral ischemia model due to its inherent deficiency in the circle of Willis.However,the low incidence and unpredictability of symp...Background:The Mongolian gerbil is an excellent laboratory animal for preparing the cerebral ischemia model due to its inherent deficiency in the circle of Willis.However,the low incidence and unpredictability of symptoms are caused by numerous complex variant types of the circle.Additionally,the lack of an evaluation system for the cer-ebral ischemia/reperfusion(I/R)model of gerbils has shackled the application of this model.Methods:We created a symptom-oriented principle and detailed neurobehavioral scoring criteria.At different time points of reperfusion,we analyzed the alteration in locomotion by rotarod test and grip force score,infarct volume by triphenyltetrazo-lium chloride(TTC)staining,neuron loss using Nissl staining,and histological charac-teristics using hematoxylin-eosin(H&E)straining.Results:With a successful model rate of 56%,32 of the 57 gerbils operated by our method harbored typical features of cerebral I/R injury,and the mortality rate in the male gerbils was significantly higher than that in the female gerbils.The suc-cessfully prepared I/R gerbils demonstrated a significant reduction in motility and grip strength at 1 day after reperfusion;formed obvious infarction;exhibited typi-cal pathological features,such as tissue edema,neuronal atrophy and death,and vacuolated structures;and were partially recovered with the extension of reperfu-sion time.Conclusion:This study developed a new method for the unilateral common carotid artery ligation I/R model of gerbil and established a standardized evaluation system for this model,which could provide a new cerebral I/R model of gerbils with more practical applications.展开更多
Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of...Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway.展开更多
Calcium influx into neurons triggers neuronal death during cerebral ischemia/reperfusion injury.Various calcium channels are involved in cerebral ischemia/reperfusion injury.Cav3.2 channel is a main subtype of T-type ...Calcium influx into neurons triggers neuronal death during cerebral ischemia/reperfusion injury.Various calcium channels are involved in cerebral ischemia/reperfusion injury.Cav3.2 channel is a main subtype of T-type calcium channels.T-type calcium channel blockers,such as pimozide and mibefradil,have been shown to prevent cerebral ischemia/reperfusion injury-induced brain injury.However,the role of Cav3.2 channels in cerebral ischemia/reperfusion injury remains unclear.Here,in vitro and in vivo models of cerebral ischemia/reperfusion injury were established using middle cerebral artery occlusion in mice and high glucose hypoxia/reoxygenation exposure in primary hippocampal neurons.The results showed that Cav3.2 expression was significantly upregulated in injured hippocampal tissue and primary hippocampal neurons.We further established a Cav3.2 gene-knockout mouse model of cerebral ischemia/reperfusion injury.Cav3.2 knockout markedly reduced infarct volume and brain water content,and alleviated neurological dysfunction after cerebral ischemia/reperfusion injury.Additionally,Cav3.2 knockout attenuated cerebral ischemia/reperfusion injury-induced oxidative stress,inflammatory response,and neuronal apoptosis.In the hippocampus of Cav3.2-knockout mice,calcineurin overexpression offset the beneficial effect of Cav3.2 knockout after cerebral ischemia/reperfusion injury.These findings suggest that the neuroprotective function of Cav3.2 knockout is mediated by calcineurin/nuclear factor of activated T cells 3 signaling.Findings from this study suggest that Cav3.2 could be a promising target for treatment of cerebral ischemia/reperfusion injury.展开更多
Elevated intraocular pressure(IOP)is one of the causes of retinal ischemia/reperfusion injury,which results in NRP3 inflammasome activation and leads to visual damage.Homerla is repo rted to play a protective role in ...Elevated intraocular pressure(IOP)is one of the causes of retinal ischemia/reperfusion injury,which results in NRP3 inflammasome activation and leads to visual damage.Homerla is repo rted to play a protective role in neuroinflammation in the cerebrum.However,the effects of Homerla on NLRP3inflammasomes in retinal ischemia/reperfusion injury caused by elevated IOP remain unknown.In our study,animal models we re constructed using C57BL/6J and Homer1^(flox/-)/Homerla^(+/-)/Nestin-Cre^(+/-)mice with elevated IOP-induced retinal ischemia/repe rfusion injury.For in vitro expe riments,the oxygen-glucose deprivation/repe rfusion injury model was constructed with M uller cells.We found that Homerla ove rexpression amelio rated the decreases in retinal thickness and Muller cell viability after ischemia/reperfusion injury.Furthermore,Homerla knockdown promoted NF-κB P65^(Ser536)activation via caspase-8,NF-κB P65 nuclear translocation,NLRP3 inflammasome formation,and the production and processing of interleukin-1βand inte rleukin-18.The opposite results we re observed with Homerla ove rexpression.Finally,the combined administration of Homerla protein and JSH-23 significantly inhibited the reduction in retinal thickness in Homer1^(flox/-)Homer1a^(+/-)/Nestin-Cre^(+/-)mice and apoptosis in M uller cells after ischemia/reperfusion injury.Taken together,these studies demonstrate that Homer1a exerts protective effects on retinal tissue and M uller cells via the caspase-8/NF-KB P65/NLRP3 pathway after I/R injury.展开更多
Microcirculatory disturbances are complex processes caused by many factors,including abnormal vasomotor responses,decreased blood flow velocity,vascular endothelial cell injury,altered leukocyte and endothelial cell i...Microcirculatory disturbances are complex processes caused by many factors,including abnormal vasomotor responses,decreased blood flow velocity,vascular endothelial cell injury,altered leukocyte and endothelial cell interactions,plasma albumin leakage,microvascular hemorrhage,and thrombosis.These disturbances involve multiple mechanisms and interactions among mechanisms that can include energy metabolism,the mitochondrial respiratory chain,oxidative stress,inflammatory factors,adhesion molecules,the cytoskeleton,vascular endothelial cells,caveolae,cell junctions,the vascular basement membrane,neutrophils,monocytes,and platelets.In clinical practice,aside from drugs that target abnormal vasomotor responses and platelet adhesion,there continues to be a lack of multi-target drugs that can regulate the complex mechanistic links and interactions underlying microcirculatory disturbances.Natural products have demonstrated obvious positive therapeutic effects in treating ischemia/reperfusion(I/R)-and lipopolysaccharide(LPS)-induced microcirculatory disturbances.In recent years,numerous research papers on the improvement of microcirculatory function by natural products have been published in international journals.In 2008 and 2017,the first listed author of this review was invited to publish reviews in the journal of Pharmacology&Therapeutics on the improvement of microcirculatory disturbances and organ injury induced by I/R using Salvia miltiorrhiza ingredients and other natural components of compounded Chinese medicine,respectively.This review systematically summarizes the effects,targets of action,and mechanisms of natural products regarding improving I/R-and LPSinduced microcirculatory disturbances and tissue injury.Based on this summary,scientific proposals are suggested for the discovery of new drugs to improve microcirculatory disturbances in disease.展开更多
Stroke is one of the leading causes of death and disability worldwide.However,information on stroke-related tongue coating microbiome(TCM)is limited,and whether TCM modulation could benefit for stroke prevention and r...Stroke is one of the leading causes of death and disability worldwide.However,information on stroke-related tongue coating microbiome(TCM)is limited,and whether TCM modulation could benefit for stroke prevention and rehabilitation is unknown.Here,TCM from stroke patients(SP)was characterized using molecular techniques.The occurrence of stroke resulted in TCM dysbiosis with significantly reduced species richness and diversity.The abundance of Prevotella,Leptotrichia,Actinomyces,Alloprevotella,Haemophilus,and TM7_[G-1]were greatly reduced,but common infection Streptococcus and Pseudomonas were remarkably increased.Furthermore,an antioxidative probiotic Lactiplantibacillus plantarum AR113 was used for TCM intervention in stroke rats with cerebral ischemia/reperfusion(I/R).AR113 partly restored I/R induced change of TCM and gut microbiota with significantly improved neurological deficit,relieved histopathologic change,increased activities of antioxidant enzymes,and decreased contents of oxidative stress biomarkers.Moreover,the gene expression of antioxidant-related proteins and apoptosis-related factors heme oxygenase-1(HO-1),superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),nuclear factor erythroid 2-related factor 2(Nrf2),NAD(P)H:quinone oxidoreductase-1(NQO-1),and Bcl-2 was significantly increased,but cytochrome C,cleaved caspase-3,and Bax were markedly decreased in the brain by AR113 treatment.The results suggested that AR113 could ameliorate cerebral I/R injury through antioxidation and anti-apoptosis pathways,and AR113 intervention of TCM may have the application potential for stroke prevention and control.展开更多
Introduction:Myocardial ischemia-reperfusion(IR)injury has received widespread attention due to its damaging effects.Electroacupuncture(EA)pretreatment has preventive effects on myocardial IR injury.SLC26A4 is a Na+in...Introduction:Myocardial ischemia-reperfusion(IR)injury has received widespread attention due to its damaging effects.Electroacupuncture(EA)pretreatment has preventive effects on myocardial IR injury.SLC26A4 is a Na+independent anion reverse transporter and has not been reported in myocardial IR injury.Objectives:Tofind potential genes that may be regulated by EA and explore the role of this gene in myocardial IR injury.Methods:RNA sequencing and bioinformatics analysis were performed to obtain the differentially expressed genes in the myocardial tissue of IR rats with EA pretreatment.Myocardial infarction size was detected by TTC staining.Serum CK,creatinine kinase-myocardial band,Cardiac troponin I,and lactate dehydrogenase levels were determined by ELISA.The effect of SLC26A4 on cardiomyocyte apoptosis was explored by TUNEL staining and western blotting.The effects of SLC26A4 on inflammation were determined by HE staining,ELISA,and real-time PCR.The effect of SLC26A4 on the NF-κB pathway was determined by western blotting.Results:SLC26A4 was up-regulated in IR rats but downregulated in IR rats with EA pretreatment.Compared with IR rats,those with SLC26A4 knockdown exhibited improved cardiac function according to decreased myocardial infarction size,reduced serum LDH/CK/CK-MB/cTnI levels,and elevated left ventricular ejection fraction and fractional shortening.SLC26A4 silencing inhibited myocardial inflammation,cell apoptosis,phosphorylation,and nuclear translocation of NF-κB p65.Conclusion:SLC26A4 exhibited promoting effects on myocardial IR injury,while the SLC26A4 knockdown had an inhibitory effect on the NF-κB pathway.These results further unveil the role of SLC26A4 in IR injury.展开更多
AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for a...AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for advanced glycation end-products(RAGE)/nuclear factor-kappa B(NF-κB)signaling pathway.METHODS:A rat model of RIR was developed by increasing the pressure of the anterior chamber of the eye.Eighty male Sprague Dawley were randomly divided into five groups:sham group(n=8),RIR group(n=28),RIR+NAS group(n=28),RIR+FPS-ZM1 group(n=8)and RIR+NAS+FPS-ZM1 group(n=8).The therapeutic effects of NAS were examined by hematoxylin-eosin(H&E)staining,and retinal ganglion cells(RGCs)counting.The expression of interleukin 1 beta(IL-1β),HMGB1,RAGE,and nod-like receptor 3(NLRP3)proteins and the phosphorylation of nuclear factorkappa B(p-NF-κB)were analyzed by immunohistochemistry staining and Western blot analysis.The expression of HMGB1 protein was also detected by enzyme-linked immunosorbent assay(ELISA).RESULTS:H&E staining results showed that NAS significantly reduced retinal edema and increased the number of RGCs in RIR rats.With NAS therapy,the HMGB1 and RAGE expression decreased significantly,and the activation of the NF-κB/NLRP3 pathway was antagonized along with the inhibition of p-NF-κB and NLRP3 protein expression.Additionally,NAS exhibited an anti-inflammatory effect by reducing IL-1βexpression.The inhibitory of RAGE binding to HMGB1 by RAGE inhibitor FPS-ZM1 led to a significant decrease of p-NF-κB and NLRP3 expression,so as to the IL-1βexpression and retinal edema,accompanied by an increase of RGCs in RIR rats.CONCLUSION:NAS may exhibit a neuroprotective effect against RIR via the HMGB1/RAGE/NF-κB signaling pathway,which may be a useful therapeutic target for retinal disease.展开更多
Objective:Myocardial ischemia-reperfusion injury(MIRI)is one of the leading causes of death from cardiovascular disease in humans,especially in individuals exposed to cold environments.Long non-coding RNAs(lncRNAs)reg...Objective:Myocardial ischemia-reperfusion injury(MIRI)is one of the leading causes of death from cardiovascular disease in humans,especially in individuals exposed to cold environments.Long non-coding RNAs(lncRNAs)regulate MIRI through multiple mechanisms.This study explored the regulatory effect of lncRNA-AK138945 on myocardial ischemia-reperfusion injury and its mechanism.Methods:In vivo,8-to 12-weeks-old C57BL/6 male mice underwent ligation of the left anterior descending coronary artery for 50 minutes followed by reperfusion for 48 hours.In vitro,the primary cultured neonatal mouse ventricular cardiomyocytes(NMVCs)were treated with 100μmol/L hydrogen peroxide(H_(2)O_(2)).The knockdown of lncRNA-AK138945 was evaluated to detect cardiomyocyte apoptosis,and a glucose-regulated,endoplasmic reticulum stress-related protein 94(GRP94)inhibitor was used to detect myocardial injury.Results:We found that the expression level of lncRNA-AK138945 was reduced in MIRI mouse heart tissue and H2O2-treated cardiomyocytes.Moreover,the proportion of apoptosis in cardiomyocytes increased after lncRNA-AK138945 was silenced.The expression level of Bcl2 protein was decreased,and the expression level of Bad,Caspase 9 and Caspase 3 protein was increased.Our further study found that miR-1a-3p is a direct target of lncRNA-AK138945,after lncRNA-AK138945 was silenced in cardiomyocytes,the expression level of miR-1a-3p was increased while the expression level of its downstream protein GRP94 was decreased.Interestingly,treatment with a GRP94 inhibitor(PU-WS13)intensified H2O2-induced cardiomyocyte apoptosis.After overexpression of FOXO3,the expression levels of lncRNA-AK138945 and GRP94 were increased,while the expression levels of miR-1a-3p were decreased.Conclusion:LncRNA-AK138945 inhibits GRP94 expression by regulating miR-1a-3p,leading to cardiomyocyte apoptosis.The transcription factor Forkhead Box Protein O3(FOXO3)participates in cardiomyocyte apoptosis induced by endoplasmic reticulum stress through up-regulation of lncRNA-AK138945.展开更多
AIM: To investigate the role of nuclear factor kappa B (NF-κB) in the pathogenesis of lung injury induced by intestinal ischemia/reperfusion (I/R), and its effect on intercellular adhesion molecule-1 (ICAM-1) ...AIM: To investigate the role of nuclear factor kappa B (NF-κB) in the pathogenesis of lung injury induced by intestinal ischemia/reperfusion (I/R), and its effect on intercellular adhesion molecule-1 (ICAM-1) expression and neutrophil infiltration. METHODS: Twenty-four Wistar rats were divided randomly into control, I/R and pyrrolidine dithiocarbamate (PDTC) treatment groups, n = 8 in each. I/R group and PDTC treatment group received superior mysenteric artery (SMA) occluding for 1 h and reperfusion for 2 h. PDTC group was administrated with intraperitoneal injection of 2% 100 mg/kg PDTC 1 h before surgery. Lung histology and bronchia alveolus lung fluid (BALF) protein were assayed. Serum IL-6, lung malondialdehyde (MDA) and myeloperoxidase (MPO) as well as the expression level of NF-κB and ICAM-1 were measured.RESULTS: Lung injury induced by intestinal I/R, was characterized by edema, hemorrhage and neutrophil infiltration as well as by the significant rising of BALF protein. Compared to control group, the levels of serum IL-6 and lung MDA and MPO increased significantly in I/R group (P=0.001). Strong positive expression of NF-κB p65 and ICAM-1 was observed. After the administration of PDTC, the level of serum IL-6, lung MDA and MPO as well as NF-κB and ICAM-1 decreased significantly (P〈 0.05) when compared to I/R group.CONCLUSION: The activation of NF-κB plays an important role in the pathogenesis of lung injury induced by intestinal I/R through upregulating the neutrophil infiltration and lung ICAM-1 expression. PDTC as an inhibitor of NF-κB can prevent lung injury induced by intestinal I/R through inhibiting the activity of NF-κB.展开更多
BACKGROUND: The nuclear translocation of transcription factors may be a critical factor in the intracellular pathway involved in ischemia/reperfusion(I/R) injury. The aim of the study was to evaluate the role of nucle...BACKGROUND: The nuclear translocation of transcription factors may be a critical factor in the intracellular pathway involved in ischemia/reperfusion(I/R) injury. The aim of the study was to evaluate the role of nuclear factor-kappa B (NF-κB) in the pathogenesis of liver injury induced by intestinal ischemia/reperfusion (IIR) and to investigate the effect of pyrrolidine dithiocarbamate (PDTC) on this liver injury. METHODS: Male Wistar rats were divided randomly into three experimental groups (8 rats in each): sham operation group (control group); intestinal/reperfusion group(I/R group): animals received 1-hour of intestinal ischemia and 2-hour reperfusion; and PDTC treatment group (PDTC group): animals that received I/R subject to PDTC treatment (100 mg/kg). The histological changes in the liver and intestine were observed, and the serum levels of tumor necrosis factor-α (TNF-α), alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver superoxide dismutase (SOD), and nitrite/nitrate (NO) were measured. The immunohistochemical expression and Western blot analysis of liver NF-κB and intercellular adhesion molecule-1(ICAM-1) were observed. RESULTS: IIR induced liver injury characterized by the histological changes of liver edema, hemorrhage, polymorphonuclear neutrophil (PMN) infiltration, and elevated serum levels of AST and ALT. The serum TNF-α level was significantly higher than that of the control group(P<0.01) and a high level of liver oxidant product was observed (P<0.01). These changes were parallel to the positive expression of NF-κB and ICAM-1. After the administration of PDTC, the histological changes after liver injury were improved; the levels of SOD and NO in the liver were elevated and reduced, respectively (P<0.01). The expressions of ICAM-1 and NF-κB in the liver were weakened (P<0.01). CONCLUSION: NF-κB plays an important role in the pathogenesis of liver injury induced by HR. PDTC, an agent known to inhibit the activation of NF-κB, can reduce and prevent this injury.展开更多
Intestinal ischemia is a frequently observed phenomenon. Morbidity and mortality rates are extraordinarily high and did not improve over the past decades. This is in part attributable to limited knowledge on the patho...Intestinal ischemia is a frequently observed phenomenon. Morbidity and mortality rates are extraordinarily high and did not improve over the past decades. This is in part attributable to limited knowledge on the pathophysiology of intestinal ischemia-reperfusion(IR) in man, the paucity in preventive and/or therapeutic options and the lack of early diagnostic markers for intestinal ischemia. To improve our knowledge and solve clinically important questions regarding intestinal IR, we developed a human experimental intestinal IR model. With this model, we were able to gain insight into the mechanisms that allow the human gut to withstand short periods of IR without the development of severe inflammatory responses. The purpose of this review is to overview the most relevant recent advances in our understanding of the pathophysiology of human intestinal IR, as well as the(potential) future clinical implications.展开更多
BACKGROUND Intestinal barrier breakdown,a frequent complication of intestinal ischemiareperfusion(I/R)including dysfunction and the structure changes of the intestine,is characterized by a loss of tight junction and e...BACKGROUND Intestinal barrier breakdown,a frequent complication of intestinal ischemiareperfusion(I/R)including dysfunction and the structure changes of the intestine,is characterized by a loss of tight junction and enhanced permeability of the intestinal barrier and increased mortality.To develop effective and novel therapeutics is important for the improvement of outcome of patients with intestinal barrier deterioration.Recombinant human angiopoietin-like protein 4(rhANGPTL4)is reported to protect the blood-brain barrier when administered exogenously,and endogenous ANGPTL4 deficiency deteriorates radiationinduced intestinal injury.AIM To identify whether rhANGPTL4 may protect intestinal barrier breakdown induced by I/R.METHODS Intestinal I/R injury was elicited through clamping the superior mesenteric artery for 60 min followed by 240 min reperfusion.Intestinal epithelial(Caco-2)cells and human umbilical vein endothelial cells were challenged by hypoxia/reoxygenation to mimic I/R in vitro.RESULTS Indicators including fluorescein isothiocyanate-conjugated dextran(4 kilodaltons;FD-4)clearance,ratio of phosphorylated myosin light chain/total myosin light chain,myosin light chain kinase and loss of zonula occludens-1,claudin-2 and VE-cadherin were significantly increased after intestinal I/R or cell hypoxia/reoxygenation.rhANGPTL4 treatment significantly reversed these indicators,which were associated with inhibiting the inflammatory and oxidative cascade,excessive activation of cellular autophagy and apoptosis and improvement of survival rate.Similar results were observed in vitro when cells were challenged by hypoxia/reoxygenation,whereas rhANGPTL4 reversed the indicators close to normal level in Caco-2 cells and human umbilical vein endothelial cells significantly.CONCLUSION rhANGPTL4 can function as a protective agent against intestinal injury induced by intestinal I/R and improve survival via maintenance of intestinal barrier structure and functions.展开更多
AIM To evaluate whether fish oil(FO) can protect liver injury induced by intestinal ischemia/reperfusion(I/R) via the AMPK/SIRT-1/autophagy pathway.METHODS Ischemia in wistar rats was induced by superior mesenteric ar...AIM To evaluate whether fish oil(FO) can protect liver injury induced by intestinal ischemia/reperfusion(I/R) via the AMPK/SIRT-1/autophagy pathway.METHODS Ischemia in wistar rats was induced by superior mesenteric artery occlusion for 60 min and reperfusion for 240 min. One milliliter per day of FO emulsion or normal saline was administered by intraperitoneal injection for 5 consecutive days to each animal. Animals were sacrificed at the end of reperfusion. Blood andtissue samples were collected for analyses. AMPK, SIRT-1, and Beclin-1 expression was determined in lipopolysaccharide(LPS)-stimulated HepG2 cells with or without FO emulsion treatment.RESULTS Intestinal I/R induced significant liver morphological changes and increased serum alanine aminotransferase and aspartate aminotransferase levels. Expression of p-AMPK/AMPK, SIRT-1, and autophagy markers was decreased whereas tumor necrosis factor-α(TNF-α) and malonaldehyde(MDA) were increased. FO emulsion blocked the changes of the above indicators effectively. Besides, in LPS-stimulated HepG2 cells, small interfering RNA(siRNA) targeting AMPK impaired the FO induced increase of p-AMPK, SIRT-1, and Beclin-1 and decrease of TNF-α and MDA. SIRT-1 siRNA impaired the increase of SIRT-1 and Beclin-1 and the decrease of TNF-α and MDA.CONCLUSION Our study indicates that FO may protect the liver against intestinal I/R induced injury through the AMPK/SIRT-1/autophagy pathway.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82260245(to YX),81660207(to YX),81960253(to YL),82160268(to YL),U1812403(to ZG)Science and Technology Projects of Guizhou Province,Nos.[2019]1440(to YX),[2020]1Z067(to WH)+1 种基金Cultivation Foundation of Guizhou Medical University,No.[20NSP069](to YX)Excellent Young Talents Plan of Guizhou Medical University,No.(2022)101(to WH)。
文摘Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury.
基金supported by the Natural Science Foundation of Shandong Province,No.ZR2023MC168the National Natural Science Foundation of China,No.31670989the Key R&D Program of Shandong Province,No.2019GSF107037(all to CS).
文摘Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.
基金Supported by The Chinese Traditional Medicine Foundation of Guangdong Province, China, No. 1040051
文摘AIM: To investigate the effects of Cromolyn Sodium (CS) pretreated prior to reperfusion on the activity of intestinal mucosal mast cells (IMMC) and mucous membrane of the small intestine in ischemia-reperfusion (IR) injury of rats. METHODS: Thirty-two Sprague-Dawley (SD) rats were randomly divided into four groups: sham group (group S), model group (group M), high and low dosage of CS groups, (treated with CS 50 mg/kg or 25 mg/kg, group C1 and C2). Intestinal IR damage was induced by clamping the superior mesenteric artery for 45 min followed by reperfusion for 60 min. CS was intravenouly administrated 15 min before reperfusion. Ultrastructure and counts of IMMC, intestinal structure, the expression of tryptase, levels of malondisldehyde (MDA), TNF-α, histamine and superoxide dismutase (SOD) activity of the small intestine were detected at the end of experiment. RESULTS: The degranulation of IMMC was seen in group M and was attenuated by CS treatment. Chiu’s score of group M was higher than the other groups. CS could attenuate the up-regulation of the Chiu’s score, the levels of MDA, TNF-α, and expression of tryptase and the down-regulation of SOD activity and histamine concentration. The Chiu’s score and MDA content were negatively correlated, while SOD activity was positively correlated to the histamine concentration respectively in the IR groups. CONCLUSION: Pretreated of CS prior to reperfusion protects the small intestine mucous from ischemia- reperfusion damage, the mechanism is inhibited IMMC from degranulation.
基金Supported by the Norwegian Research Council through the Integrisc project number 219819Sensocure AS,Langmyra 11,3185 Skoppum,Norway
文摘AIM To investigate viability assessment of segmental small bowel ischemia/reperfusion in a porcine model.METHODS In 15 pigs, five or six 30-cm segments of jejunum were simultaneously made ischemic by clamping the mesenteric arteries and veins for 1 to 16 h. Reperfusion was initiated after different intervals of ischemia(1-8 h) and subsequently monitored for 5-15 h. The intestinal segments were regularly photographed and assessed visually and by palpation. Intraluminal lactate and glycerol concentrations were measured by microdialysis, and samples were collected for light microscopy and transmission electron microscopy. The histological changes were described and graded.RESULTS Using light microscopy, the jejunum was considered as viable until 6 h of ischemia, while with transmission electron microscopy the ischemic muscularis propria was considered viable until 5 h of ischemia. However, following ≥ 1 h of reperfusion, only segments that had been ischemic for ≤ 3 h appeared viable, suggesting a possible upper limit for viability in the porcine mesenteric occlusion model. Although intraluminal microdialysis allowed us to closely monitor the onset and duration of ischemia and the onset of reperfusion, we were unable to find sufficient level of association between tissue viability and metabolic markers to conclude that microdialysis is clinically relevant for viability assessment. Evaluation of color and motility appears to be poor indicators of intestinal viability.CONCLUSION Three hours of total ischemia of the small bowel followed by reperfusion appears to be the upper limit for viability in this porcine mesenteric ischemia model.
文摘Summary: The role of nuclear factor kappaB in intestine injury induced by hepatic ischemia reperfusion was investigated. Eighteen male Wistar rats were divided into 3 groups randomly: sham operation group (group A), hepatic ischemia reperfusion group (group B) and hepatic ischemia reperfusion plus pyrrolidine dithiocarbamate (PDTC) group (group C). The rats in group A were only subjected to laparotomy, those in group B underwent partial hepatic ischemia reperfusion (ischemia for 1 h and reperfusion for 2 h) and those in group C underwent the same procedure as that of group B but received PDTC 200 mg/kg i.v. before and after ischemia. After reperfusion, tissues of jejunum and venous blood were obtained for measurement of TNF-α, MDA and MPO. The levels of TNF-α in jejunum and venous blood, the levels of MPO in jejunum in group B were significantly higher than those in group A and group C (P<0.05). There was no significant different in the levels of MDA between group B and group C. The severity of histological intestinal injury in group B and group C was similar. Hepatic ischemia reperfusion caused intestine injury, NF-kappaB may play an important role in this course and the targeting of upstream components of the inflammatory response, such as NF-kappaB, may have important therapeutic applications.
基金supported by the National Natural Science Foundation of China,Nos.82104158(to XT),31800887(to LY),31972902(to LY),82001422(to YL)China Postdoctoral Science Foundation,No.2020M683750(to LY)partially by Young Talent Fund of University Association for Science and Technology in Shaanxi Province of China,No.20200307(to LY).
文摘β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.
基金National Key Research and Development Program of China,Grant/Award Number:2021YFF0702402National Natural Science Foundation of China,Grant/Award Number:32070531。
文摘Background:The Mongolian gerbil is an excellent laboratory animal for preparing the cerebral ischemia model due to its inherent deficiency in the circle of Willis.However,the low incidence and unpredictability of symptoms are caused by numerous complex variant types of the circle.Additionally,the lack of an evaluation system for the cer-ebral ischemia/reperfusion(I/R)model of gerbils has shackled the application of this model.Methods:We created a symptom-oriented principle and detailed neurobehavioral scoring criteria.At different time points of reperfusion,we analyzed the alteration in locomotion by rotarod test and grip force score,infarct volume by triphenyltetrazo-lium chloride(TTC)staining,neuron loss using Nissl staining,and histological charac-teristics using hematoxylin-eosin(H&E)straining.Results:With a successful model rate of 56%,32 of the 57 gerbils operated by our method harbored typical features of cerebral I/R injury,and the mortality rate in the male gerbils was significantly higher than that in the female gerbils.The suc-cessfully prepared I/R gerbils demonstrated a significant reduction in motility and grip strength at 1 day after reperfusion;formed obvious infarction;exhibited typi-cal pathological features,such as tissue edema,neuronal atrophy and death,and vacuolated structures;and were partially recovered with the extension of reperfu-sion time.Conclusion:This study developed a new method for the unilateral common carotid artery ligation I/R model of gerbil and established a standardized evaluation system for this model,which could provide a new cerebral I/R model of gerbils with more practical applications.
基金supported by the National Natural Science Foundation of China,Nos.82102295(to WG),82071339(to LG),82001119(to JH),and 81901994(to BZ).
文摘Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway.
基金supported by the Natural Science Foundation of Anhui Province of China,No.2208085Y32Scientific Research Plan Project of Anhui Province of China,No.2022AH020076the Chen Xiao-Ping Foundation for the Development of Science and Technology of Hubei Province,No.CXPJJH12000005-07-115(all to CT).
文摘Calcium influx into neurons triggers neuronal death during cerebral ischemia/reperfusion injury.Various calcium channels are involved in cerebral ischemia/reperfusion injury.Cav3.2 channel is a main subtype of T-type calcium channels.T-type calcium channel blockers,such as pimozide and mibefradil,have been shown to prevent cerebral ischemia/reperfusion injury-induced brain injury.However,the role of Cav3.2 channels in cerebral ischemia/reperfusion injury remains unclear.Here,in vitro and in vivo models of cerebral ischemia/reperfusion injury were established using middle cerebral artery occlusion in mice and high glucose hypoxia/reoxygenation exposure in primary hippocampal neurons.The results showed that Cav3.2 expression was significantly upregulated in injured hippocampal tissue and primary hippocampal neurons.We further established a Cav3.2 gene-knockout mouse model of cerebral ischemia/reperfusion injury.Cav3.2 knockout markedly reduced infarct volume and brain water content,and alleviated neurological dysfunction after cerebral ischemia/reperfusion injury.Additionally,Cav3.2 knockout attenuated cerebral ischemia/reperfusion injury-induced oxidative stress,inflammatory response,and neuronal apoptosis.In the hippocampus of Cav3.2-knockout mice,calcineurin overexpression offset the beneficial effect of Cav3.2 knockout after cerebral ischemia/reperfusion injury.These findings suggest that the neuroprotective function of Cav3.2 knockout is mediated by calcineurin/nuclear factor of activated T cells 3 signaling.Findings from this study suggest that Cav3.2 could be a promising target for treatment of cerebral ischemia/reperfusion injury.
基金supported by the Youth Development Project of Air Force Military Medical University,No.21 QNPY072Key Project of Shaanxi Provincial Natural Science Basic Research Program,No.2023-JC-ZD-48(both to FF)。
文摘Elevated intraocular pressure(IOP)is one of the causes of retinal ischemia/reperfusion injury,which results in NRP3 inflammasome activation and leads to visual damage.Homerla is repo rted to play a protective role in neuroinflammation in the cerebrum.However,the effects of Homerla on NLRP3inflammasomes in retinal ischemia/reperfusion injury caused by elevated IOP remain unknown.In our study,animal models we re constructed using C57BL/6J and Homer1^(flox/-)/Homerla^(+/-)/Nestin-Cre^(+/-)mice with elevated IOP-induced retinal ischemia/repe rfusion injury.For in vitro expe riments,the oxygen-glucose deprivation/repe rfusion injury model was constructed with M uller cells.We found that Homerla ove rexpression amelio rated the decreases in retinal thickness and Muller cell viability after ischemia/reperfusion injury.Furthermore,Homerla knockdown promoted NF-κB P65^(Ser536)activation via caspase-8,NF-κB P65 nuclear translocation,NLRP3 inflammasome formation,and the production and processing of interleukin-1βand inte rleukin-18.The opposite results we re observed with Homerla ove rexpression.Finally,the combined administration of Homerla protein and JSH-23 significantly inhibited the reduction in retinal thickness in Homer1^(flox/-)Homer1a^(+/-)/Nestin-Cre^(+/-)mice and apoptosis in M uller cells after ischemia/reperfusion injury.Taken together,these studies demonstrate that Homer1a exerts protective effects on retinal tissue and M uller cells via the caspase-8/NF-KB P65/NLRP3 pathway after I/R injury.
基金supported by the National Natural Science Foundation of China(81873217 and 82074310)the State Key Laboratory of Core Technology in Innovative Chinese Medicine(20221108).
文摘Microcirculatory disturbances are complex processes caused by many factors,including abnormal vasomotor responses,decreased blood flow velocity,vascular endothelial cell injury,altered leukocyte and endothelial cell interactions,plasma albumin leakage,microvascular hemorrhage,and thrombosis.These disturbances involve multiple mechanisms and interactions among mechanisms that can include energy metabolism,the mitochondrial respiratory chain,oxidative stress,inflammatory factors,adhesion molecules,the cytoskeleton,vascular endothelial cells,caveolae,cell junctions,the vascular basement membrane,neutrophils,monocytes,and platelets.In clinical practice,aside from drugs that target abnormal vasomotor responses and platelet adhesion,there continues to be a lack of multi-target drugs that can regulate the complex mechanistic links and interactions underlying microcirculatory disturbances.Natural products have demonstrated obvious positive therapeutic effects in treating ischemia/reperfusion(I/R)-and lipopolysaccharide(LPS)-induced microcirculatory disturbances.In recent years,numerous research papers on the improvement of microcirculatory function by natural products have been published in international journals.In 2008 and 2017,the first listed author of this review was invited to publish reviews in the journal of Pharmacology&Therapeutics on the improvement of microcirculatory disturbances and organ injury induced by I/R using Salvia miltiorrhiza ingredients and other natural components of compounded Chinese medicine,respectively.This review systematically summarizes the effects,targets of action,and mechanisms of natural products regarding improving I/R-and LPSinduced microcirculatory disturbances and tissue injury.Based on this summary,scientific proposals are suggested for the discovery of new drugs to improve microcirculatory disturbances in disease.
基金supported by National Science Fund for Distinguished Young Scholars(grant No.32025029)Shanghai Education Committee Scientific Research Innovation Project(grant No.2101070007800120)+1 种基金Clinical research project in health industry of Shanghai Municipal Health Commission(202240379)the Development Fund for Shanghai Talents(grant No.2021077).
文摘Stroke is one of the leading causes of death and disability worldwide.However,information on stroke-related tongue coating microbiome(TCM)is limited,and whether TCM modulation could benefit for stroke prevention and rehabilitation is unknown.Here,TCM from stroke patients(SP)was characterized using molecular techniques.The occurrence of stroke resulted in TCM dysbiosis with significantly reduced species richness and diversity.The abundance of Prevotella,Leptotrichia,Actinomyces,Alloprevotella,Haemophilus,and TM7_[G-1]were greatly reduced,but common infection Streptococcus and Pseudomonas were remarkably increased.Furthermore,an antioxidative probiotic Lactiplantibacillus plantarum AR113 was used for TCM intervention in stroke rats with cerebral ischemia/reperfusion(I/R).AR113 partly restored I/R induced change of TCM and gut microbiota with significantly improved neurological deficit,relieved histopathologic change,increased activities of antioxidant enzymes,and decreased contents of oxidative stress biomarkers.Moreover,the gene expression of antioxidant-related proteins and apoptosis-related factors heme oxygenase-1(HO-1),superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),nuclear factor erythroid 2-related factor 2(Nrf2),NAD(P)H:quinone oxidoreductase-1(NQO-1),and Bcl-2 was significantly increased,but cytochrome C,cleaved caspase-3,and Bax were markedly decreased in the brain by AR113 treatment.The results suggested that AR113 could ameliorate cerebral I/R injury through antioxidation and anti-apoptosis pathways,and AR113 intervention of TCM may have the application potential for stroke prevention and control.
基金This study was funded by the Joint Guidance Project of Heilongjiang Provincial Natural Science Foundation of China(LH2023H063)the Scientific Research Project of Academic Thought Inheritance of Chinese Medicine Great Master of Heilongjiang Provincial Administration of Traditional Chinese Medicine(ZHY2023-151).
文摘Introduction:Myocardial ischemia-reperfusion(IR)injury has received widespread attention due to its damaging effects.Electroacupuncture(EA)pretreatment has preventive effects on myocardial IR injury.SLC26A4 is a Na+independent anion reverse transporter and has not been reported in myocardial IR injury.Objectives:Tofind potential genes that may be regulated by EA and explore the role of this gene in myocardial IR injury.Methods:RNA sequencing and bioinformatics analysis were performed to obtain the differentially expressed genes in the myocardial tissue of IR rats with EA pretreatment.Myocardial infarction size was detected by TTC staining.Serum CK,creatinine kinase-myocardial band,Cardiac troponin I,and lactate dehydrogenase levels were determined by ELISA.The effect of SLC26A4 on cardiomyocyte apoptosis was explored by TUNEL staining and western blotting.The effects of SLC26A4 on inflammation were determined by HE staining,ELISA,and real-time PCR.The effect of SLC26A4 on the NF-κB pathway was determined by western blotting.Results:SLC26A4 was up-regulated in IR rats but downregulated in IR rats with EA pretreatment.Compared with IR rats,those with SLC26A4 knockdown exhibited improved cardiac function according to decreased myocardial infarction size,reduced serum LDH/CK/CK-MB/cTnI levels,and elevated left ventricular ejection fraction and fractional shortening.SLC26A4 silencing inhibited myocardial inflammation,cell apoptosis,phosphorylation,and nuclear translocation of NF-κB p65.Conclusion:SLC26A4 exhibited promoting effects on myocardial IR injury,while the SLC26A4 knockdown had an inhibitory effect on the NF-κB pathway.These results further unveil the role of SLC26A4 in IR injury.
基金Supported by the National Natural Science Foundation of China(No.82071888)the Natural Science Foundation of Shandong Province(No.ZR2021MH351,No.ZR2020MH074)+1 种基金the Introduction and Cultivation Project for Young Innovative Talents in Shandong ProvinceWeifang Science and Technology Development Plan(No.2021GX057).
文摘AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for advanced glycation end-products(RAGE)/nuclear factor-kappa B(NF-κB)signaling pathway.METHODS:A rat model of RIR was developed by increasing the pressure of the anterior chamber of the eye.Eighty male Sprague Dawley were randomly divided into five groups:sham group(n=8),RIR group(n=28),RIR+NAS group(n=28),RIR+FPS-ZM1 group(n=8)and RIR+NAS+FPS-ZM1 group(n=8).The therapeutic effects of NAS were examined by hematoxylin-eosin(H&E)staining,and retinal ganglion cells(RGCs)counting.The expression of interleukin 1 beta(IL-1β),HMGB1,RAGE,and nod-like receptor 3(NLRP3)proteins and the phosphorylation of nuclear factorkappa B(p-NF-κB)were analyzed by immunohistochemistry staining and Western blot analysis.The expression of HMGB1 protein was also detected by enzyme-linked immunosorbent assay(ELISA).RESULTS:H&E staining results showed that NAS significantly reduced retinal edema and increased the number of RGCs in RIR rats.With NAS therapy,the HMGB1 and RAGE expression decreased significantly,and the activation of the NF-κB/NLRP3 pathway was antagonized along with the inhibition of p-NF-κB and NLRP3 protein expression.Additionally,NAS exhibited an anti-inflammatory effect by reducing IL-1βexpression.The inhibitory of RAGE binding to HMGB1 by RAGE inhibitor FPS-ZM1 led to a significant decrease of p-NF-κB and NLRP3 expression,so as to the IL-1βexpression and retinal edema,accompanied by an increase of RGCs in RIR rats.CONCLUSION:NAS may exhibit a neuroprotective effect against RIR via the HMGB1/RAGE/NF-κB signaling pathway,which may be a useful therapeutic target for retinal disease.
基金This work was supported in part by the National Natural Science Foundation of China(82370417,81970320,82270273)the Certificate of China Postdoctoral Science Foundation Grant(2021M693826)+1 种基金the postdoctoral funding from Heilongjiang Province(21042230046)the Hai Yan Youth Fund from Harbin Medical University Cancer Hospital(JJQN2021-09).
文摘Objective:Myocardial ischemia-reperfusion injury(MIRI)is one of the leading causes of death from cardiovascular disease in humans,especially in individuals exposed to cold environments.Long non-coding RNAs(lncRNAs)regulate MIRI through multiple mechanisms.This study explored the regulatory effect of lncRNA-AK138945 on myocardial ischemia-reperfusion injury and its mechanism.Methods:In vivo,8-to 12-weeks-old C57BL/6 male mice underwent ligation of the left anterior descending coronary artery for 50 minutes followed by reperfusion for 48 hours.In vitro,the primary cultured neonatal mouse ventricular cardiomyocytes(NMVCs)were treated with 100μmol/L hydrogen peroxide(H_(2)O_(2)).The knockdown of lncRNA-AK138945 was evaluated to detect cardiomyocyte apoptosis,and a glucose-regulated,endoplasmic reticulum stress-related protein 94(GRP94)inhibitor was used to detect myocardial injury.Results:We found that the expression level of lncRNA-AK138945 was reduced in MIRI mouse heart tissue and H2O2-treated cardiomyocytes.Moreover,the proportion of apoptosis in cardiomyocytes increased after lncRNA-AK138945 was silenced.The expression level of Bcl2 protein was decreased,and the expression level of Bad,Caspase 9 and Caspase 3 protein was increased.Our further study found that miR-1a-3p is a direct target of lncRNA-AK138945,after lncRNA-AK138945 was silenced in cardiomyocytes,the expression level of miR-1a-3p was increased while the expression level of its downstream protein GRP94 was decreased.Interestingly,treatment with a GRP94 inhibitor(PU-WS13)intensified H2O2-induced cardiomyocyte apoptosis.After overexpression of FOXO3,the expression levels of lncRNA-AK138945 and GRP94 were increased,while the expression levels of miR-1a-3p were decreased.Conclusion:LncRNA-AK138945 inhibits GRP94 expression by regulating miR-1a-3p,leading to cardiomyocyte apoptosis.The transcription factor Forkhead Box Protein O3(FOXO3)participates in cardiomyocyte apoptosis induced by endoplasmic reticulum stress through up-regulation of lncRNA-AK138945.
基金Supported by The Natural Science Foundation of Liaoning Province,No.20042135
文摘AIM: To investigate the role of nuclear factor kappa B (NF-κB) in the pathogenesis of lung injury induced by intestinal ischemia/reperfusion (I/R), and its effect on intercellular adhesion molecule-1 (ICAM-1) expression and neutrophil infiltration. METHODS: Twenty-four Wistar rats were divided randomly into control, I/R and pyrrolidine dithiocarbamate (PDTC) treatment groups, n = 8 in each. I/R group and PDTC treatment group received superior mysenteric artery (SMA) occluding for 1 h and reperfusion for 2 h. PDTC group was administrated with intraperitoneal injection of 2% 100 mg/kg PDTC 1 h before surgery. Lung histology and bronchia alveolus lung fluid (BALF) protein were assayed. Serum IL-6, lung malondialdehyde (MDA) and myeloperoxidase (MPO) as well as the expression level of NF-κB and ICAM-1 were measured.RESULTS: Lung injury induced by intestinal I/R, was characterized by edema, hemorrhage and neutrophil infiltration as well as by the significant rising of BALF protein. Compared to control group, the levels of serum IL-6 and lung MDA and MPO increased significantly in I/R group (P=0.001). Strong positive expression of NF-κB p65 and ICAM-1 was observed. After the administration of PDTC, the level of serum IL-6, lung MDA and MPO as well as NF-κB and ICAM-1 decreased significantly (P〈 0.05) when compared to I/R group.CONCLUSION: The activation of NF-κB plays an important role in the pathogenesis of lung injury induced by intestinal I/R through upregulating the neutrophil infiltration and lung ICAM-1 expression. PDTC as an inhibitor of NF-κB can prevent lung injury induced by intestinal I/R through inhibiting the activity of NF-κB.
文摘BACKGROUND: The nuclear translocation of transcription factors may be a critical factor in the intracellular pathway involved in ischemia/reperfusion(I/R) injury. The aim of the study was to evaluate the role of nuclear factor-kappa B (NF-κB) in the pathogenesis of liver injury induced by intestinal ischemia/reperfusion (IIR) and to investigate the effect of pyrrolidine dithiocarbamate (PDTC) on this liver injury. METHODS: Male Wistar rats were divided randomly into three experimental groups (8 rats in each): sham operation group (control group); intestinal/reperfusion group(I/R group): animals received 1-hour of intestinal ischemia and 2-hour reperfusion; and PDTC treatment group (PDTC group): animals that received I/R subject to PDTC treatment (100 mg/kg). The histological changes in the liver and intestine were observed, and the serum levels of tumor necrosis factor-α (TNF-α), alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver superoxide dismutase (SOD), and nitrite/nitrate (NO) were measured. The immunohistochemical expression and Western blot analysis of liver NF-κB and intercellular adhesion molecule-1(ICAM-1) were observed. RESULTS: IIR induced liver injury characterized by the histological changes of liver edema, hemorrhage, polymorphonuclear neutrophil (PMN) infiltration, and elevated serum levels of AST and ALT. The serum TNF-α level was significantly higher than that of the control group(P<0.01) and a high level of liver oxidant product was observed (P<0.01). These changes were parallel to the positive expression of NF-κB and ICAM-1. After the administration of PDTC, the histological changes after liver injury were improved; the levels of SOD and NO in the liver were elevated and reduced, respectively (P<0.01). The expressions of ICAM-1 and NF-κB in the liver were weakened (P<0.01). CONCLUSION: NF-κB plays an important role in the pathogenesis of liver injury induced by HR. PDTC, an agent known to inhibit the activation of NF-κB, can reduce and prevent this injury.
基金Supported by Dutch Gastroenterology and Hepatology Society(MLDS grant WO10-57 to Dejong CHC and Lenaerts K)Career Development Grant CDG(to Derikx JPM)The Netherlands Organisation for Scientific Research(Rubicon grant 825.13.012 to Grootjans J)
文摘Intestinal ischemia is a frequently observed phenomenon. Morbidity and mortality rates are extraordinarily high and did not improve over the past decades. This is in part attributable to limited knowledge on the pathophysiology of intestinal ischemia-reperfusion(IR) in man, the paucity in preventive and/or therapeutic options and the lack of early diagnostic markers for intestinal ischemia. To improve our knowledge and solve clinically important questions regarding intestinal IR, we developed a human experimental intestinal IR model. With this model, we were able to gain insight into the mechanisms that allow the human gut to withstand short periods of IR without the development of severe inflammatory responses. The purpose of this review is to overview the most relevant recent advances in our understanding of the pathophysiology of human intestinal IR, as well as the(potential) future clinical implications.
基金the National Natural Science Foundation of China,No.81600446the Science and Technology of Traditional Chinese Medicine Foundation in Qingdao,No.2021-zyyz03the Science and technology development of Medicine and health Foundation in Shandong Province,China,No.202004010508.
文摘BACKGROUND Intestinal barrier breakdown,a frequent complication of intestinal ischemiareperfusion(I/R)including dysfunction and the structure changes of the intestine,is characterized by a loss of tight junction and enhanced permeability of the intestinal barrier and increased mortality.To develop effective and novel therapeutics is important for the improvement of outcome of patients with intestinal barrier deterioration.Recombinant human angiopoietin-like protein 4(rhANGPTL4)is reported to protect the blood-brain barrier when administered exogenously,and endogenous ANGPTL4 deficiency deteriorates radiationinduced intestinal injury.AIM To identify whether rhANGPTL4 may protect intestinal barrier breakdown induced by I/R.METHODS Intestinal I/R injury was elicited through clamping the superior mesenteric artery for 60 min followed by 240 min reperfusion.Intestinal epithelial(Caco-2)cells and human umbilical vein endothelial cells were challenged by hypoxia/reoxygenation to mimic I/R in vitro.RESULTS Indicators including fluorescein isothiocyanate-conjugated dextran(4 kilodaltons;FD-4)clearance,ratio of phosphorylated myosin light chain/total myosin light chain,myosin light chain kinase and loss of zonula occludens-1,claudin-2 and VE-cadherin were significantly increased after intestinal I/R or cell hypoxia/reoxygenation.rhANGPTL4 treatment significantly reversed these indicators,which were associated with inhibiting the inflammatory and oxidative cascade,excessive activation of cellular autophagy and apoptosis and improvement of survival rate.Similar results were observed in vitro when cells were challenged by hypoxia/reoxygenation,whereas rhANGPTL4 reversed the indicators close to normal level in Caco-2 cells and human umbilical vein endothelial cells significantly.CONCLUSION rhANGPTL4 can function as a protective agent against intestinal injury induced by intestinal I/R and improve survival via maintenance of intestinal barrier structure and functions.
基金Supported by the National Natural Science Foundation of China,No.81600446Natural Science Foundation of Liaoning Province,China,No.201102048Natural Science Foundation of Dalian Medical Association,No.w SJ/KJC-01-JL-01
文摘AIM To evaluate whether fish oil(FO) can protect liver injury induced by intestinal ischemia/reperfusion(I/R) via the AMPK/SIRT-1/autophagy pathway.METHODS Ischemia in wistar rats was induced by superior mesenteric artery occlusion for 60 min and reperfusion for 240 min. One milliliter per day of FO emulsion or normal saline was administered by intraperitoneal injection for 5 consecutive days to each animal. Animals were sacrificed at the end of reperfusion. Blood andtissue samples were collected for analyses. AMPK, SIRT-1, and Beclin-1 expression was determined in lipopolysaccharide(LPS)-stimulated HepG2 cells with or without FO emulsion treatment.RESULTS Intestinal I/R induced significant liver morphological changes and increased serum alanine aminotransferase and aspartate aminotransferase levels. Expression of p-AMPK/AMPK, SIRT-1, and autophagy markers was decreased whereas tumor necrosis factor-α(TNF-α) and malonaldehyde(MDA) were increased. FO emulsion blocked the changes of the above indicators effectively. Besides, in LPS-stimulated HepG2 cells, small interfering RNA(siRNA) targeting AMPK impaired the FO induced increase of p-AMPK, SIRT-1, and Beclin-1 and decrease of TNF-α and MDA. SIRT-1 siRNA impaired the increase of SIRT-1 and Beclin-1 and the decrease of TNF-α and MDA.CONCLUSION Our study indicates that FO may protect the liver against intestinal I/R induced injury through the AMPK/SIRT-1/autophagy pathway.