期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Cytological and Proteomic Analysis of Ginkgo biloba Pollen Intine 被引量:2
1
作者 Weixing Li Yunling Ye +3 位作者 Fangmei Cheng Yan Lu Biao Jin Li Wang 《Horticultural Plant Journal》 SCIE 2020年第4期257-266,共10页
The pollen intine plays important roles in pollen germination and tube growth,but related information in Ginkgo biloba remains unclear.We isolated and obtained de-exined pollen from G.biloba.Using fluorescent probes,w... The pollen intine plays important roles in pollen germination and tube growth,but related information in Ginkgo biloba remains unclear.We isolated and obtained de-exined pollen from G.biloba.Using fluorescent probes,we observed the strongest cellulose fluorescence in the pollen intine.De-esterified pectin immunolabeled with JIM5 was present throughout the entire cell wall,whereas esterified pectin recognized by the monoclonal antibody JIM7 was concentrated in some regions.Callose staining with aniline blue was observed across the entire surface of the pollen intine.These results were confirmed by Fourier Transform InfraRed(FTIR)analysis.We also used proteomic approaches to identify different proteins between mature and de-exined pollen(48h after hydration)in vitro.Based on mass spectrometry,de-exined pollen had more proteins than mature pollen,including calmodulin,serine hydroxymethyltransferase,β-galactosidase 6,and class IV chitinase.According to Gene Ontology(GO)analysis,the differentially expressed proteins were mainly associated with transportation,defense reaction,sugar metabolism,energy metabolism,signal transduction,and cell wall formation.These findings suggest that most proteins involved in pollen germination and pollen tube growth are synthesized during pollen hydration,indicating the important role of pollen hydration in the reproductive process of G.Biloba. 展开更多
关键词 Ginkgo biloba pollen intine cytological analysis PROTEOMICS mass spectrometry
下载PDF
Sporophytic control of anther development and male fertility by glucose-6-phosphate/phosphate translocator 1(OsGPT1) in rice 被引量:1
2
作者 Aili Qu Yan Xu +8 位作者 Xinxing Yu Qi Si Xuwen Xu Changhao Liu Liuyi Yang Yueping Zheng Mengmeng Zhang Shuqun Zhang Juan Xu 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2021年第8期695-705,共11页
Coordination between the sporophytic tissue and the gametic pollen within anthers is tightly controlled to achieve the optimal pollen fitness. Glucose-6-phosphate/phosphate translocator(GPT) transports glucose-6-phosp... Coordination between the sporophytic tissue and the gametic pollen within anthers is tightly controlled to achieve the optimal pollen fitness. Glucose-6-phosphate/phosphate translocator(GPT) transports glucose-6-phosphate, a key precursor of starch and/or fatty acid biosynthesis, into plastids. Here, we report the functional characterization of Os GPT1 in the rice anther development and pollen fertility. Pollen grains from homozygous osgpt1 mutant plants fail to accumulate starch granules, resulting in pollen sterility. Genetic analyses reveal a sporophytic effect for this mutation. Os GPT1 is highly expressed in the tapetal layer of rice anther. Degeneration of the tapetum, an important process to provide cellular contents to support pollen development, is impeded in osgpt1 plants. In addition, defective intine and exine are observed in the pollen from osgpt1 plants. Expression levels of multiple genes that are important to tapetum degeneration or pollen wall formation are significantly decreased in osgpt1 anthers. Previously, we reported that At GPT1 plays a gametic function in the accumulation of lipid bodies in Arabidopsis pollen. This report highlights a sporophytic role of Os GPT1 in the tapetum degeneration and pollen development. The divergent functions of Os GPT1 and At GPT1 in pollen development might be a result of their independent evolution after monocots and dicots diverged. 展开更多
关键词 Glucose-6-phosphate/phosphate TRANSLOCATOR Male fertility Starch accumulation Sporophytic control Pollen development Tapetum degeneration intine and exine formation RICE
原文传递
PECTATE LYASE-LIKE10 is associated with pollen wall development in Brassica campestris 被引量:4
3
作者 Jingjing Jiang Lina Yao +3 位作者 Youjian Yu Meiling Lv Ying Miao Jiashu Cao 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2014年第11期1095-1105,共11页
PECTATE LYASE‐LIKE10(PLL10) was previously identified as one of the differentially expressed genes both in microspores during the late pollen developmental stages and in pistils during the fertilization process in ... PECTATE LYASE‐LIKE10(PLL10) was previously identified as one of the differentially expressed genes both in microspores during the late pollen developmental stages and in pistils during the fertilization process in Chinese cabbage(Brassica campestris ssp. chinensis). Here, antisense‐RNA was used to study the functions of BcPLL10 in Chinese cabbage. Abnormal pollen was identified in the transgenic lines(bcpll10‐4, ‐5, and ‐6). In fertilization experiments, fewer seeds were harvested when the antisense‐RNA lines were used as pollen donor. In vivo and in vitro pollen germination assays less germinated pollen tubes were observed in bcpll10 lines. Scanning electron microscopy observation verified that the tryphine materials were over accumulated around the pollen surface and sticked them together in bcpll10.Moreover, transmission electron microscopy observation revealed that the internal endintine was overdeveloped and predominantly occupied the intine, and disturbed thenormal proportional distribution of the two layers in the non‐germinal furrow region; and no obvious demarcation existed between them in the germinal furrow region in the bcpll10 pollen. Collectively, this study presented a novel PLL gene that played an important role during the pollen wall development in B. campestris, which may also possess potential importance for male sterility usage in agriculture. 展开更多
关键词 Brassica campestris Brassica rapa Chinese cabbage exine intine pectate lyase PLL pollen wall
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部