This paper studies the dynamics of intra-acceptor hole relaxation in Be δ-doped GaAs/AlAs multiple quantum wells (MQW) with doping at the centre by time-resolved pump-probe spectroscopy using a picosecond free elec...This paper studies the dynamics of intra-acceptor hole relaxation in Be δ-doped GaAs/AlAs multiple quantum wells (MQW) with doping at the centre by time-resolved pump-probe spectroscopy using a picosecond free electron laser for infrared experiments. Low temperature far-infrared absorption measurements clearly show three principal absorption lines due to transitions of the Be acceptor from the ground state to the first three odd-parity excited states respectively. The pump-probe experiments are performed at different temperatures and different pump pulse wavelengths. The hole relaxation time from 2p excited state to ls ground state in MQW is found to be much shorter than that in bulk GaAs, and shown to be independent of temperature but strongly dependent on wavelength. The zone-folded acoustic phonon emission and slower decay of the wavefunctions of impurity states are suggested to account for the reduction of the 2p excited state lifetime in MQW. The wavelength dependence of the 2p lifetime is attributed to the diffusion of the Be atom δ-layer in quantum wells.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 60776044)the Natural Science Foundation of Shandong Province,China (Grant No 2006ZRA10001)
文摘This paper studies the dynamics of intra-acceptor hole relaxation in Be δ-doped GaAs/AlAs multiple quantum wells (MQW) with doping at the centre by time-resolved pump-probe spectroscopy using a picosecond free electron laser for infrared experiments. Low temperature far-infrared absorption measurements clearly show three principal absorption lines due to transitions of the Be acceptor from the ground state to the first three odd-parity excited states respectively. The pump-probe experiments are performed at different temperatures and different pump pulse wavelengths. The hole relaxation time from 2p excited state to ls ground state in MQW is found to be much shorter than that in bulk GaAs, and shown to be independent of temperature but strongly dependent on wavelength. The zone-folded acoustic phonon emission and slower decay of the wavefunctions of impurity states are suggested to account for the reduction of the 2p excited state lifetime in MQW. The wavelength dependence of the 2p lifetime is attributed to the diffusion of the Be atom δ-layer in quantum wells.