Background: Stem radial growth in forests is not uniform. Rather, it is characterized by periods of relatively fast or slow growth, or sometimes no growth at all. These fluctuations are generally a function of varying...Background: Stem radial growth in forests is not uniform. Rather, it is characterized by periods of relatively fast or slow growth, or sometimes no growth at all. These fluctuations are generally a function of varying environmental conditions(e.g. water availability) and, importantly, will also be associated with adjustments in proprties in the wood formed. Stand level conditions and forest management, particularly thinning and stand density will, thowever, also have a major influence on patterns of growth variation. We explore how different thinning histories and/or stand densities influence these dynamics of tree growth in the important commercial plantation species Pinus radiata D. Don.Methods: Daily stem size change was measured using electronic point dendrometers over two growing seasons on P. radiata trees at two sites, subjected to different thinning regimes. Timing, rates and periodicity of annual growth were calculated from these data.Results: Greater overall cross-sectional growth in thinned plots was driven mainly by two dynamics. First, the cessation of seasonal growth occurred at least 3 weeks later in the stands in which thinning had taken place. There was no difference between thinned/unthinned stands, however, in the timing of growth onset. Second, within the longer season, trees in thinned plots had more growth days(as much as 20% more) than unthinned plots. The rates of growth on days when growth occurred were not different, however. In this context, it is notable that in trees in the unthinned plots experiencing the most severe competition there were strong "pulses" of growth following drought-breaking rainfall events. Unthinned plots at high stand densities also maintained a smaller(but consistent) zone of dividing cells throughout the season than thinned plots.Conclusions: In Pinus radiata growing under conditions as in our study, conditions late in summer, particularly drought, have an important effect on the timing of cessation of growth. Early season temperature appears to have no effect in determining timing of annual growth. Limiting conditions during the season reduce growing duration, and thus total growth, more in unthinned stands than thinned stands. These findings are valuable in developing new generations of fine-scale growth and wood property models.展开更多
Forest recovery plays a critical role in regulating eco-hydrological processes in forested watersheds.However,characteristics of the intra-annual runoff variation associated with different forest recovery patterns rem...Forest recovery plays a critical role in regulating eco-hydrological processes in forested watersheds.However,characteristics of the intra-annual runoff variation associated with different forest recovery patterns remain poorly understood.In this study,three forest change periods were identified,the baseline period(1961-1985),reforestation period(1986-2000)and fruit tree planting period(2001-2016).We selected the magnitude of seasonal runoff(wet and dry seasons)and distribution characteristics,i.e.,non-uniformity coefficient(C_(v)),complete accommodation coefficient(C_(r)),concentration ratio(C_(n)),concentration period(C_(d)),absolute variation ratio(ΔR)and relative variation ratio(C_(max)).The pair-wise approach evaluated the intra-annual runoff variation characteristics between forest change periods.Results indicate that reforestation decreased wet season runoff and increased dry season runoff.In contrast,fruit tree planting increased wet season runoff and had no significant effect on dry season runoff.For intra-annual runoff distribution characteristics,reforestation significantly reduced the C_(v),C_(r),C_(n)and C_(max).Distribution of the intra-annual runoff in the fruit tree planting period was not significantly different from the baseline.We concluded that reforestation reduced the occurance of extreme water conditions in wet and dry seasons and effectively increased the stability of the intra-annual runoff.In contrast,fruit tree planting increased instability and fluctuation of the intra-annual runoff after reforestation.The characteristics of the intra-annual runoff to fruit tree planting was similar to those of the baseline.Therefore,adopting fruit tree planting practices to regulate intra-annual runoff characteristics may not be a practical approach,and impacts of different reforestation practices should be ascertained in our study region.The implications of this study should guide regional land-water management,and this study adds to the understanding of the impacts gained in forest cover on hydrology.展开更多
Surface albedo is a primary causative variable associated with the process of surface energy exchange. Numerous studies have examined diurnal variation of surface albedo at a regional scale; however, few studies have ...Surface albedo is a primary causative variable associated with the process of surface energy exchange. Numerous studies have examined diurnal variation of surface albedo at a regional scale; however, few studies have analyzed the intra-annual variations of surface albedo in concurrence with different land cover types. In this study, we amalgamated surface albedo product data (MCD43) from 2001 to 2008, land-use data (in 2000 and 2008) and land cover data (in 2000); quantitative analyses of surface albedo variation pertaining to diverse land cover types and the effect of the presence/absence of ground snow were undertaken. Results indicate that intra-annual surface albedo values exhibit flat Gaussian or triangular distributions depending upon land cover types. During snow-free periods, satellite observed surface albedo associated with the non-growing season was lower than that associated with the growing season. Satellite observed surface albedo during the presence of ground snow period was 2-4 times higher than that observed during snow-free periods. Surface albedo reference values in typical land cover types have been calculated; notably, grassland, cropland and built-up land were associated with higher surface albedo reference values than barren while ground snow was present. Irrespective of land cover types, the lowest surface albedo reference values were associated with forested areas. Proposed reference values may prove extremely useful in diverse research areas, including ecological modeling, land surface process modeling and radiation energy balance applications.展开更多
基金funded in large part by a grant(PNC 196-1011)from Forest and Wood Products Australia(FWPA)and funding and in-kind support from HVP,FSA and CSIRO
文摘Background: Stem radial growth in forests is not uniform. Rather, it is characterized by periods of relatively fast or slow growth, or sometimes no growth at all. These fluctuations are generally a function of varying environmental conditions(e.g. water availability) and, importantly, will also be associated with adjustments in proprties in the wood formed. Stand level conditions and forest management, particularly thinning and stand density will, thowever, also have a major influence on patterns of growth variation. We explore how different thinning histories and/or stand densities influence these dynamics of tree growth in the important commercial plantation species Pinus radiata D. Don.Methods: Daily stem size change was measured using electronic point dendrometers over two growing seasons on P. radiata trees at two sites, subjected to different thinning regimes. Timing, rates and periodicity of annual growth were calculated from these data.Results: Greater overall cross-sectional growth in thinned plots was driven mainly by two dynamics. First, the cessation of seasonal growth occurred at least 3 weeks later in the stands in which thinning had taken place. There was no difference between thinned/unthinned stands, however, in the timing of growth onset. Second, within the longer season, trees in thinned plots had more growth days(as much as 20% more) than unthinned plots. The rates of growth on days when growth occurred were not different, however. In this context, it is notable that in trees in the unthinned plots experiencing the most severe competition there were strong "pulses" of growth following drought-breaking rainfall events. Unthinned plots at high stand densities also maintained a smaller(but consistent) zone of dividing cells throughout the season than thinned plots.Conclusions: In Pinus radiata growing under conditions as in our study, conditions late in summer, particularly drought, have an important effect on the timing of cessation of growth. Early season temperature appears to have no effect in determining timing of annual growth. Limiting conditions during the season reduce growing duration, and thus total growth, more in unthinned stands than thinned stands. These findings are valuable in developing new generations of fine-scale growth and wood property models.
基金supported financially by the Education Department of Jiangxi Provincial(GJJ151141)National Natural Science Foundation of China(31660234)+1 种基金Jiangxi Province Department of Science and Technology(20161BBH80049)the Outstanding Young Scholar of Jiangxi Science and Technology Innovation(20192BCBL23016)。
文摘Forest recovery plays a critical role in regulating eco-hydrological processes in forested watersheds.However,characteristics of the intra-annual runoff variation associated with different forest recovery patterns remain poorly understood.In this study,three forest change periods were identified,the baseline period(1961-1985),reforestation period(1986-2000)and fruit tree planting period(2001-2016).We selected the magnitude of seasonal runoff(wet and dry seasons)and distribution characteristics,i.e.,non-uniformity coefficient(C_(v)),complete accommodation coefficient(C_(r)),concentration ratio(C_(n)),concentration period(C_(d)),absolute variation ratio(ΔR)and relative variation ratio(C_(max)).The pair-wise approach evaluated the intra-annual runoff variation characteristics between forest change periods.Results indicate that reforestation decreased wet season runoff and increased dry season runoff.In contrast,fruit tree planting increased wet season runoff and had no significant effect on dry season runoff.For intra-annual runoff distribution characteristics,reforestation significantly reduced the C_(v),C_(r),C_(n)and C_(max).Distribution of the intra-annual runoff in the fruit tree planting period was not significantly different from the baseline.We concluded that reforestation reduced the occurance of extreme water conditions in wet and dry seasons and effectively increased the stability of the intra-annual runoff.In contrast,fruit tree planting increased instability and fluctuation of the intra-annual runoff after reforestation.The characteristics of the intra-annual runoff to fruit tree planting was similar to those of the baseline.Therefore,adopting fruit tree planting practices to regulate intra-annual runoff characteristics may not be a practical approach,and impacts of different reforestation practices should be ascertained in our study region.The implications of this study should guide regional land-water management,and this study adds to the understanding of the impacts gained in forest cover on hydrology.
基金National Key Basic Research Program of China(973 Program),No.2010CB950902
文摘Surface albedo is a primary causative variable associated with the process of surface energy exchange. Numerous studies have examined diurnal variation of surface albedo at a regional scale; however, few studies have analyzed the intra-annual variations of surface albedo in concurrence with different land cover types. In this study, we amalgamated surface albedo product data (MCD43) from 2001 to 2008, land-use data (in 2000 and 2008) and land cover data (in 2000); quantitative analyses of surface albedo variation pertaining to diverse land cover types and the effect of the presence/absence of ground snow were undertaken. Results indicate that intra-annual surface albedo values exhibit flat Gaussian or triangular distributions depending upon land cover types. During snow-free periods, satellite observed surface albedo associated with the non-growing season was lower than that associated with the growing season. Satellite observed surface albedo during the presence of ground snow period was 2-4 times higher than that observed during snow-free periods. Surface albedo reference values in typical land cover types have been calculated; notably, grassland, cropland and built-up land were associated with higher surface albedo reference values than barren while ground snow was present. Irrespective of land cover types, the lowest surface albedo reference values were associated with forested areas. Proposed reference values may prove extremely useful in diverse research areas, including ecological modeling, land surface process modeling and radiation energy balance applications.