This paper reports a continuous-wave (CW) mid-infrared intracavity singly resonant optical parametric oscillator based on periodically poled lithium niobate (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. C...This paper reports a continuous-wave (CW) mid-infrared intracavity singly resonant optical parametric oscillator based on periodically poled lithium niobate (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. Considering the thermal lens effects, it adopted an optical ballast lens and the near-concentric cavity for better operation. At the PPLN's grating period of 28.5 μm and the temperature of 140℃, the maximum idler output power of 155 mW at 3.86 μm has been achieved when the 808 nm pump power is 8.5 W, leading to an optical-to-optical conversion efficiency of 1.82%.展开更多
In this paper we report on a continuous-wave (CW) intracavity singly resonant optical parametric oscillator (ICSRO) based on periodically poled LiNbO3 (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. Consi...In this paper we report on a continuous-wave (CW) intracavity singly resonant optical parametric oscillator (ICSRO) based on periodically poled LiNbO3 (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. Considering the thermal lens effects and diffraction loss, an optical ballast lens and a near-concentric cavity are adopted for better operation. Through varying the grating period and the temperature, the tunable signal output from 1406 nm to 1513 nm is obtained. At a PPLN grating period of 29 pm and a temperature of 413 K, a maximum signal output power of 820 mW at 1500 nm is achieved when the 808 nm pump power is 10.9 W, leading to an optical-to-optical conversion efficiency of 7.51%.展开更多
We report a low noise continuous-wave (CW) single-frequency 1.5-μm laser source obtained by a singly resonant optical parametric oscillator (SRO) based on periodically poled lithium niobate (PPLN). The SRO was ...We report a low noise continuous-wave (CW) single-frequency 1.5-μm laser source obtained by a singly resonant optical parametric oscillator (SRO) based on periodically poled lithium niobate (PPLN). The SRO was pumped by a CW single-frequency Nd:YVO4 laser at 1.06μm. The 1.02 W of CW single-frequency signal laser at 1.5 μm was obtained at pump power of 6 W. At the output power of around 0.75 W, the power stability was better than ±l.5% and no mode-hopping was observed in 30 min and frequency stability was better than 8.5 MHz in 1 min. The signal wavelength could be tuned from 1.57 to 1.59 μm by varying the PPLN temperature. The 1.5-μm laser exhibits low noise characteristics, the intensity noise of the laser reaches the shot noise limit (SNL) at an analysis frequency of 4 MHz and the phase noise is less than 1 dB above the SNL at analysis frequencies above 10 MHz.展开更多
We demonstrate a high-emciency mid-infrared picosecond optical parametric oscillator (OPO) based on MgO doped periodically poled lithium niobate (MgO:PPLN) with a laser diode array (LDA) pumped Innoslab amplifi...We demonstrate a high-emciency mid-infrared picosecond optical parametric oscillator (OPO) based on MgO doped periodically poled lithium niobate (MgO:PPLN) with a laser diode array (LDA) pumped Innoslab amplifier as the pumping source. Under a 16 W synchronously pumping power, 4.5 W of idler light at 2896nm is obtained. A tuning range of idler light from 2688nm to 3016nm is achieved, within which the highest optical-optical conversion ettlciency from pump power to OPO output is 35.1%. Moreover, a signal light of -500mW from 1644 to 1700nm with a repetition rate of 233.8 MHz is generated.展开更多
We report an efficient continuous-wave (CW) tunable intra-cavity singly resonant optical parametric oscillator based on the multi-period periodically poled lithium niobate and using a laser diode (LD) end-pumped C...We report an efficient continuous-wave (CW) tunable intra-cavity singly resonant optical parametric oscillator based on the multi-period periodically poled lithium niobate and using a laser diode (LD) end-pumped CW 1064 nm Nd:YVO4 laser as the pump source. A highly efficiency CW operation is realized through a careful cavity design for mode matching and thermal stability. The signal tuning range is 1401 1500 nm obtained by varying the domain period. The maximum output power of 2.2 W at 1500 nm is obtained with a 17.1 W 808 nm LD power and the corresponding conversion efficiency is 12.9%.展开更多
We demonstrated experimentally a synchronously pumped intracavity frequency-doubled femtosecond optical para- metric oscillator (OPO) using a periodically-poled lithium niobate (PPLN) as the nonlinear material in ...We demonstrated experimentally a synchronously pumped intracavity frequency-doubled femtosecond optical para- metric oscillator (OPO) using a periodically-poled lithium niobate (PPLN) as the nonlinear material in combination with a lithium triborate (LBO) as the doubling crystal. A Kerr-lens-mode-locked (KLM) Ti:sapphire oscillator at the wavelength of 790 nm was used as the pump source, which was capable of generating pulses with a duration as short as 117 fs. A tunable femtosecond laser covering the 624-672 nm range was realized by conveniently adjusting the OPO cavity length. A maximum average output power of 260 mW in the visible range was obtained at the pump power of 2.2 W, with a typical pulse duration of 205 fs assuming a sech2 pulse profile.展开更多
We demonstrate a widely tunable near-infrared source from 767 nm to 874 nm generated by the intracavity second harmonic generation (SHG) in an optical parametric oscillator pumped by a Yb:LYSO solid-state laser. Th...We demonstrate a widely tunable near-infrared source from 767 nm to 874 nm generated by the intracavity second harmonic generation (SHG) in an optical parametric oscillator pumped by a Yb:LYSO solid-state laser. The home-made Yb:LYSO oscillator centered at 1035 nm delivers an average power of 2 W and a pulse duration as short as 351 fs. TWo MgO doped periodically poled lithium niobates (MgO:PPLN) with grating periods of 28.5-31.5 μm in steps of 0.5 μm and 19.5-21.3μm in steps of 0.2 μm are used for the OPO and intracavity SHG, respectively. The maximum average output power of 180 mW at 798 nm was obtained and the output pulses have pulse duration of 313 fs at 792 nm if a sech2-pulse shape was assumed. In addition, tunable signal femtosecond pulses from 1428 nm to 1763 nm are also realized with the maximum average power of 355 mW at 1628 nm.展开更多
We have demonstrated a high-average-power,high-repetition-rate optical terahertz(THz)source based on difference frequency generation(DFG)in the GaSe crystal by using a near-degenerate 2μm intracavity KTP optical para...We have demonstrated a high-average-power,high-repetition-rate optical terahertz(THz)source based on difference frequency generation(DFG)in the GaSe crystal by using a near-degenerate 2μm intracavity KTP optical parametric oscillator as the pump source.The power of the 2μm dual-wavelength laser was up to 12.33 W with continuous tuning ranges of 1988.0–2196.2 nm/2278.4–2065.6 nm for two waves.Different GaSe cystal lengths have been experimentally investigated for the DFG THz source in order to optimize the THz output power,which was in good agreement with the theoretical analysis.Based on an 8 mm long GaSe crystal,the THz wave was continuously tuned from 0.21 to 3 THz.The maximum THz average power of 1.66μW was obtained at repetition rate of 10 kHz under 1.48 THz.The single pulse energy amounted to 166 pJ and the conversion efficiency from 2 μm laser to THz output was 1.68×10^(-6).The signal-to-noise ratio of the detected THz voltage was 23 dB.The acceptance angle of DFG in the GaSe crystal was measured to be 0.16°.展开更多
A high efficiency,low threshold,high repetition rate H-βFraunhofer line light at 486.1 nm was demonstrated.A high-efficiency KTP optical parametric oscillator was achieved by double-pass pumping with a high-maturity ...A high efficiency,low threshold,high repetition rate H-βFraunhofer line light at 486.1 nm was demonstrated.A high-efficiency KTP optical parametric oscillator was achieved by double-pass pumping with a high-maturity 5 kHz 532 nm laser.Thanks to the efficient intracavity frequency doubling of the circulating signal wave by a BIBO crystal,the threshold pump power of the 486.1 nm output was 0.9 W,and the maximum output power of 1.6 W was achieved under the pump power of7.5 W.The optical–optical conversion efficiency was 21.3%,with the pulse duration of 45.2 ns,linewidth of~0.12 nm,and beam quality factor M~2 of 2.83.展开更多
A Kerr-lens, mode-locked YVO4∕Nd:YVO4laser coupled with an acousto-optic modulator(AOM) Q-switching near1064 nm was employed to pump an intracavity KTi OPO4(KTP) optical parametric oscillator. A subnanosecond sig...A Kerr-lens, mode-locked YVO4∕Nd:YVO4laser coupled with an acousto-optic modulator(AOM) Q-switching near1064 nm was employed to pump an intracavity KTi OPO4(KTP) optical parametric oscillator. A subnanosecond signal wave near 1572 nm with low repetition rate was realized. At an AOM repetition rate of 8 kHz, the maximum output power was 165 mW. The highest average pulse energy, the shortest duration, and the highest peak power of a mode-locking signal pulse were estimated to be ~10.3 μJ, ~120 ps, and ~82 kW, respectively.展开更多
Beam quality improvements by a large margin for signal and idler beams of a high energy 100 Hz KTiOAsO_(4)(KTA)non-critical phase matching(NCPM)optical parametric oscillator(OPO)were demonstrated using an unstable res...Beam quality improvements by a large margin for signal and idler beams of a high energy 100 Hz KTiOAsO_(4)(KTA)non-critical phase matching(NCPM)optical parametric oscillator(OPO)were demonstrated using an unstable resonator configuration instead of a plane-parallel one.Theoretically,influences of cavity lengths and transmission of an output coupler on the OPO conversion efficiency for both were numerically simulated.For OPO based on an unstable resonator with a Gaussian reflectivity mirror,the maximum pulse energies at the signal(1.53μm)and idler(3.47μm)were about 75 mJ and 26 mJ,respectively.The corresponding beam quality factors of the signal were M_(x)^(2)=9.8 and M_(y)^(2)=9.9,and M_(x)^(2)=11.2 and M_(y)^(2)=11.5 for the idler.As a comparison,128 mJ of signal and 48 mJ of idler were obtained with the plane-parallel resonator,and the M~2 factors of the signal were M_(x)^(2)=39.8 and M_(y)^(2)=38.4,and M_(x)^(2)=32.1 and M_(y)^(2)=31.4 for the idler.Compared with a plane-parallel cavity,over eight times and three times brightness improvements were realized for the signal and idler light,respectively.展开更多
We demonstrate a tunable optical parametric oscillator in a periodically poled congruently grown lithium tantalite whispering gallery mode resonator. The resonator is mechanically polished to millimeter size, and the ...We demonstrate a tunable optical parametric oscillator in a periodically poled congruently grown lithium tantalite whispering gallery mode resonator. The resonator is mechanically polished to millimeter size, and the quality factor is approximately 107 at 1064 nm. Our experiments show that this kind of resonator is capable of reaching a very low threshold and having a wide tuning range. Combined with its narrow resonant linewidth,it is potentially used as a compact, widely tunable, and narrow-linewidth infrared to mid-infrared laser source.展开更多
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos 10474071, 60637010, 60671036 and60278001)Tianjin Applied Fundamental Research Project, China (07JCZDJC05900)
文摘This paper reports a continuous-wave (CW) mid-infrared intracavity singly resonant optical parametric oscillator based on periodically poled lithium niobate (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. Considering the thermal lens effects, it adopted an optical ballast lens and the near-concentric cavity for better operation. At the PPLN's grating period of 28.5 μm and the temperature of 140℃, the maximum idler output power of 155 mW at 3.86 μm has been achieved when the 808 nm pump power is 8.5 W, leading to an optical-to-optical conversion efficiency of 1.82%.
基金Project supported partly by the National Natural Science Foundation of China (Grant Nos 60637010 and 60671036)the National Basic Research Program of China (Grant No 2007CB310403)the Tianjin Applied Fundamental Research Project, China(Grant No 07JCZDJC05900)
文摘In this paper we report on a continuous-wave (CW) intracavity singly resonant optical parametric oscillator (ICSRO) based on periodically poled LiNbO3 (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. Considering the thermal lens effects and diffraction loss, an optical ballast lens and a near-concentric cavity are adopted for better operation. Through varying the grating period and the temperature, the tunable signal output from 1406 nm to 1513 nm is obtained. At a PPLN grating period of 29 pm and a temperature of 413 K, a maximum signal output power of 820 mW at 1500 nm is achieved when the 808 nm pump power is 10.9 W, leading to an optical-to-optical conversion efficiency of 7.51%.
基金supported by the National Natural Science Foundation of China(Grant No.60878003)the Science Fund for Excellent Research Team of the National Natural Science Foundation of China(Grant No.60821004)the National Basic Research Program of China(Grant No.2010CB923101)
文摘We report a low noise continuous-wave (CW) single-frequency 1.5-μm laser source obtained by a singly resonant optical parametric oscillator (SRO) based on periodically poled lithium niobate (PPLN). The SRO was pumped by a CW single-frequency Nd:YVO4 laser at 1.06μm. The 1.02 W of CW single-frequency signal laser at 1.5 μm was obtained at pump power of 6 W. At the output power of around 0.75 W, the power stability was better than ±l.5% and no mode-hopping was observed in 30 min and frequency stability was better than 8.5 MHz in 1 min. The signal wavelength could be tuned from 1.57 to 1.59 μm by varying the PPLN temperature. The 1.5-μm laser exhibits low noise characteristics, the intensity noise of the laser reaches the shot noise limit (SNL) at an analysis frequency of 4 MHz and the phase noise is less than 1 dB above the SNL at analysis frequencies above 10 MHz.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61275142,61308042,and 51321091the National Key Scientific Instrument and Equipment Development Project under Grant No 2011YQ030127the China Postdoctoral Science Foundation under Grant No 2014T70633
文摘We demonstrate a high-emciency mid-infrared picosecond optical parametric oscillator (OPO) based on MgO doped periodically poled lithium niobate (MgO:PPLN) with a laser diode array (LDA) pumped Innoslab amplifier as the pumping source. Under a 16 W synchronously pumping power, 4.5 W of idler light at 2896nm is obtained. A tuning range of idler light from 2688nm to 3016nm is achieved, within which the highest optical-optical conversion ettlciency from pump power to OPO output is 35.1%. Moreover, a signal light of -500mW from 1644 to 1700nm with a repetition rate of 233.8 MHz is generated.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60978021,61178028,and 10804055)the Program for New Century Excellent Talents in University,China(Grant No.NCET-10-0610)+1 种基金the National Basic Research Program of China(Grant No.2007CB310403)the National High Technology Research and Development Program of China(Grant No.2011AA030208)
文摘We report an efficient continuous-wave (CW) tunable intra-cavity singly resonant optical parametric oscillator based on the multi-period periodically poled lithium niobate and using a laser diode (LD) end-pumped CW 1064 nm Nd:YVO4 laser as the pump source. A highly efficiency CW operation is realized through a careful cavity design for mode matching and thermal stability. The signal tuning range is 1401 1500 nm obtained by varying the domain period. The maximum output power of 2.2 W at 1500 nm is obtained with a 17.1 W 808 nm LD power and the corresponding conversion efficiency is 12.9%.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10874237 and 61205130)the Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. KJCX2-YW-N36)
文摘We demonstrated experimentally a synchronously pumped intracavity frequency-doubled femtosecond optical para- metric oscillator (OPO) using a periodically-poled lithium niobate (PPLN) as the nonlinear material in combination with a lithium triborate (LBO) as the doubling crystal. A Kerr-lens-mode-locked (KLM) Ti:sapphire oscillator at the wavelength of 790 nm was used as the pump source, which was capable of generating pulses with a duration as short as 117 fs. A tunable femtosecond laser covering the 624-672 nm range was realized by conveniently adjusting the OPO cavity length. A maximum average output power of 260 mW in the visible range was obtained at the pump power of 2.2 W, with a typical pulse duration of 205 fs assuming a sech2 pulse profile.
基金supported by the National Key Basic Research Program of China(Grant No.2013CB922402)the National Key Scientific Instruments Development Program of China(Grant No.2012YQ120047)+1 种基金the National Natural Science Foundation of China(Grant Nos.61205130 and 11174361)the Key Deployment Project of Chinese Academy of Sciences(Grant No.KJZD-EW-L11-03)
文摘We demonstrate a widely tunable near-infrared source from 767 nm to 874 nm generated by the intracavity second harmonic generation (SHG) in an optical parametric oscillator pumped by a Yb:LYSO solid-state laser. The home-made Yb:LYSO oscillator centered at 1035 nm delivers an average power of 2 W and a pulse duration as short as 351 fs. TWo MgO doped periodically poled lithium niobates (MgO:PPLN) with grating periods of 28.5-31.5 μm in steps of 0.5 μm and 19.5-21.3μm in steps of 0.2 μm are used for the OPO and intracavity SHG, respectively. The maximum average output power of 180 mW at 798 nm was obtained and the output pulses have pulse duration of 313 fs at 792 nm if a sech2-pulse shape was assumed. In addition, tunable signal femtosecond pulses from 1428 nm to 1763 nm are also realized with the maximum average power of 355 mW at 1628 nm.
基金National Basic Research Program of China(973)(2014CB339802,2015CB755403)National key research and development projects(2016YFC0101001)+5 种基金National Key Technology R&D Program of China(2014BAI04B05,2015BAI01B01)National Natural Science Foundation of China(NSFC)(61107086,61471257,81402067)Natural Science Foundation of Tianjin City(14JCQNJC02200)Postdoctoral Science Foundation of Chongqing(Xm2016021)Joint Incubation Project of Southwest Hospital(SWH2016LHJC-04,SWH2016LHJC-01)Science and Technology Support Program of Tianjin(13ZCZDSF02300)
文摘We have demonstrated a high-average-power,high-repetition-rate optical terahertz(THz)source based on difference frequency generation(DFG)in the GaSe crystal by using a near-degenerate 2μm intracavity KTP optical parametric oscillator as the pump source.The power of the 2μm dual-wavelength laser was up to 12.33 W with continuous tuning ranges of 1988.0–2196.2 nm/2278.4–2065.6 nm for two waves.Different GaSe cystal lengths have been experimentally investigated for the DFG THz source in order to optimize the THz output power,which was in good agreement with the theoretical analysis.Based on an 8 mm long GaSe crystal,the THz wave was continuously tuned from 0.21 to 3 THz.The maximum THz average power of 1.66μW was obtained at repetition rate of 10 kHz under 1.48 THz.The single pulse energy amounted to 166 pJ and the conversion efficiency from 2 μm laser to THz output was 1.68×10^(-6).The signal-to-noise ratio of the detected THz voltage was 23 dB.The acceptance angle of DFG in the GaSe crystal was measured to be 0.16°.
基金supported by the National Natural Science Foundation of China(No.62175181)。
文摘A high efficiency,low threshold,high repetition rate H-βFraunhofer line light at 486.1 nm was demonstrated.A high-efficiency KTP optical parametric oscillator was achieved by double-pass pumping with a high-maturity 5 kHz 532 nm laser.Thanks to the efficient intracavity frequency doubling of the circulating signal wave by a BIBO crystal,the threshold pump power of the 486.1 nm output was 0.9 W,and the maximum output power of 1.6 W was achieved under the pump power of7.5 W.The optical–optical conversion efficiency was 21.3%,with the pulse duration of 45.2 ns,linewidth of~0.12 nm,and beam quality factor M~2 of 2.83.
基金supported by the National Natural Science Foundation of China (61378022)the National Natural Science Foundation of China for Youths (61205145)+2 种基金the Fundamental Research Funds of Shandong University (2014JC032)the China Postdoctoral Science Foundation (2013M541901)Independent Innovation Foundation of Shandong University, IIFSDU (2013HW013 and 2014TB011)
文摘A Kerr-lens, mode-locked YVO4∕Nd:YVO4laser coupled with an acousto-optic modulator(AOM) Q-switching near1064 nm was employed to pump an intracavity KTi OPO4(KTP) optical parametric oscillator. A subnanosecond signal wave near 1572 nm with low repetition rate was realized. At an AOM repetition rate of 8 kHz, the maximum output power was 165 mW. The highest average pulse energy, the shortest duration, and the highest peak power of a mode-locking signal pulse were estimated to be ~10.3 μJ, ~120 ps, and ~82 kW, respectively.
基金supported in part by the National Natural Science Foundation of China(Nos.62075116 and 62075117)Key Research Program of Shandong Province(No.2019JMRH0111)+2 种基金Natural Science Foundation of Shandong Province(Nos.ZR2019MF039 and ZR2020MF114)Founding for Qilu Young Scholars from Shandong UniversityChina Postdoctoral Science Foundation(No.2021TQ0190)。
文摘Beam quality improvements by a large margin for signal and idler beams of a high energy 100 Hz KTiOAsO_(4)(KTA)non-critical phase matching(NCPM)optical parametric oscillator(OPO)were demonstrated using an unstable resonator configuration instead of a plane-parallel one.Theoretically,influences of cavity lengths and transmission of an output coupler on the OPO conversion efficiency for both were numerically simulated.For OPO based on an unstable resonator with a Gaussian reflectivity mirror,the maximum pulse energies at the signal(1.53μm)and idler(3.47μm)were about 75 mJ and 26 mJ,respectively.The corresponding beam quality factors of the signal were M_(x)^(2)=9.8 and M_(y)^(2)=9.9,and M_(x)^(2)=11.2 and M_(y)^(2)=11.5 for the idler.As a comparison,128 mJ of signal and 48 mJ of idler were obtained with the plane-parallel resonator,and the M~2 factors of the signal were M_(x)^(2)=39.8 and M_(y)^(2)=38.4,and M_(x)^(2)=32.1 and M_(y)^(2)=31.4 for the idler.Compared with a plane-parallel cavity,over eight times and three times brightness improvements were realized for the signal and idler light,respectively.
基金supported by the International Science and Technology Cooperation Program of China (ISTCP) (No.2014DFT50230)the National Key Scientific Instrument and Equipment Development Project (No.2011YQ030127)
文摘We demonstrate a tunable optical parametric oscillator in a periodically poled congruently grown lithium tantalite whispering gallery mode resonator. The resonator is mechanically polished to millimeter size, and the quality factor is approximately 107 at 1064 nm. Our experiments show that this kind of resonator is capable of reaching a very low threshold and having a wide tuning range. Combined with its narrow resonant linewidth,it is potentially used as a compact, widely tunable, and narrow-linewidth infrared to mid-infrared laser source.