Two-dimensional (2D) ultrathin SiC has received intense attention due to its broad band gap and resistance to large mechanical deformation and external chemical corrosion. However, the synthesis and application of u...Two-dimensional (2D) ultrathin SiC has received intense attention due to its broad band gap and resistance to large mechanical deformation and external chemical corrosion. However, the synthesis and application of ultrasmall 2D SiC quantum dots (QDs) has not been explored. Herein, we synthesize a type of monolayered 2D SiC QDs with advanced photoluminescence (PL) properties via a facile hydrothermal route. Their average size and thickness can be easily adjusted by altering the reaction time. The ultrasmall 2D SiC QDs exhibit a long fluorescence lifetime of 2.59 ps due to efficient quantum confinement. The applications of SiC QDs are demonstrated through labeling A549, HeLa, and NHDF cells and delivering agents for intracellular low-abundant microRNA (miRNA) detection. This advance in preparing photoluminescent SiC QDs is of great significance for broadening their potential in biomedical and optical applications.展开更多
Vesicular pH modulates the function of many organelles and plays a pivotal role in cell metabolism processes such as proliferation and apoptosis. Here, we introduce a simple colorimetric redox-polyaniline nanoindicato...Vesicular pH modulates the function of many organelles and plays a pivotal role in cell metabolism processes such as proliferation and apoptosis. Here, we introduce a simple colorimetric redox-polyaniline nanoindicator, which can detect and quantify a broader biogenic pH range with superior sensitivity compared to pre-established trafficking agents employing one-dimensional turn-on of the fluorescence resonance-energy-transfer (FRET) signal. We fabricated polyaniline- based nanoprobes, which exhibited convertible transition states according to the proton levels, as an in situ indicator of vesicular transport pH. Silica-coated Fe304-MnO heterometal nanoparticles were synthesised and utilised as a metal oxidant to polymerise the aniline monomer. Finally, silica-coated polyaniline nanoparticles with adsorbed cyanine dye fluorophores Cy3 and Cy7 (FPSNIcyB and FPSNIcy7) were fabricated as proton-sensitive nanoindicators. Owing to the selective quenching induced by the local pH variations of vesicular transport, FPSNIcy3 and FPSNIcy7 demonstrated excellent intracellular trafficking and provided sensitive optical indication of minute proton levels.展开更多
基金This work was supported by the National Institutes of Health (NIH) Grants DK-57819 and DK-61972a Merit Review Grant from US Department of Veterans Affairs (VA).
文摘Two-dimensional (2D) ultrathin SiC has received intense attention due to its broad band gap and resistance to large mechanical deformation and external chemical corrosion. However, the synthesis and application of ultrasmall 2D SiC quantum dots (QDs) has not been explored. Herein, we synthesize a type of monolayered 2D SiC QDs with advanced photoluminescence (PL) properties via a facile hydrothermal route. Their average size and thickness can be easily adjusted by altering the reaction time. The ultrasmall 2D SiC QDs exhibit a long fluorescence lifetime of 2.59 ps due to efficient quantum confinement. The applications of SiC QDs are demonstrated through labeling A549, HeLa, and NHDF cells and delivering agents for intracellular low-abundant microRNA (miRNA) detection. This advance in preparing photoluminescent SiC QDs is of great significance for broadening their potential in biomedical and optical applications.
文摘Vesicular pH modulates the function of many organelles and plays a pivotal role in cell metabolism processes such as proliferation and apoptosis. Here, we introduce a simple colorimetric redox-polyaniline nanoindicator, which can detect and quantify a broader biogenic pH range with superior sensitivity compared to pre-established trafficking agents employing one-dimensional turn-on of the fluorescence resonance-energy-transfer (FRET) signal. We fabricated polyaniline- based nanoprobes, which exhibited convertible transition states according to the proton levels, as an in situ indicator of vesicular transport pH. Silica-coated Fe304-MnO heterometal nanoparticles were synthesised and utilised as a metal oxidant to polymerise the aniline monomer. Finally, silica-coated polyaniline nanoparticles with adsorbed cyanine dye fluorophores Cy3 and Cy7 (FPSNIcyB and FPSNIcy7) were fabricated as proton-sensitive nanoindicators. Owing to the selective quenching induced by the local pH variations of vesicular transport, FPSNIcy3 and FPSNIcy7 demonstrated excellent intracellular trafficking and provided sensitive optical indication of minute proton levels.