The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigate...The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigated.The current study aims to carry out a dynamic analysis on the sandwich beam when the impactor hits the top face sheet with an initial velocity.For the layer analysis,the high-order shear deformation theory(HSDT)and Frostig's second model for the displacement fields of the core layer are used.The classical non-adhesive elastic contact theory and Hunter's principle are used to calculate the dynamic responses in terms of time.In order to validate the analytical method,the outcomes of the current investigation are compared with those gained by the experimental tests carried out by other researchers for a rectangular composite plate subject to the LVI.Finite element(FE)simulations are conducted by means of the ABAQUS software.The effects of the parameters such as foam modulus,layer material,fiber angle,impactor mass,and its velocity on the generated voltage are reviewed.展开更多
In this article, we analyze the dynamic characteristics of head wave in multi-layered half-space media models with high-velocity layer or low-velocity layer, and the model with a continuous transition-zone between the...In this article, we analyze the dynamic characteristics of head wave in multi-layered half-space media models with high-velocity layer or low-velocity layer, and the model with a continuous transition-zone between the crust and the mantle by using synthetic seismogram. It is concluded that the dynamic characteristics of head wave are sensitive to the thickness and velocity of the high-velocity layer. There is obvious diffraction phenomenon of seismic wave if the thickness of high-velocity layer is very small compared with the characteristic wavelength. In this case, the high-velocity layer cannot shield the head wave propagating along the upper interface of the media below it, and the amplitude of this head wave is proportional to the thickness or the velocity of the high-velocity layer. When the thickness of high-velocity layer is nearly identical to the characteristic wavelength of seismic wave, the wave phases reflected from the bottom of the high-velocity layer and the head wave phase may have very close arrival and weaken each other because of destructive interference. As to low-velocity layer, the amplitude of the head wave is weak and decreases with the velocity of this layer. It is also found that if a continuous transition-zone between the crust and the mantle is introduced, we can get a strong apparent head wave phase in synthetic seismogram and the amplitude of this phase increases with the thickness or velocity gradient of the transition-zone.展开更多
Intracrustal low-velocity zones(LVZs)indicate a mechanically weak crust and are widely observed in the southeast margin of the Tibetan Plateau.However,their spatial distributions and formation mechanisms remain contro...Intracrustal low-velocity zones(LVZs)indicate a mechanically weak crust and are widely observed in the southeast margin of the Tibetan Plateau.However,their spatial distributions and formation mechanisms remain controversial.To investigate their distribution and detailed morphology of the LVZs in the southeastern Tibetan Plateau,here we used teleseismic events and continuous waveform data recorded by 40 broadband seismic stations newly deployed in the Sichuan-Yunnan region from December 2018 to October 2020.A total of 12,924 high-quality P-wave receiver functions and 5–40 s fundamental Rayleigh surface wave phase velocity dispersion curves from ambient noise cross-correlation functions were obtained.The Swave velocity model at a depth interval of 0–100 km in the study area was inverted by using the trans-dimensional Markov chain Monte Carlo strategy to jointly invert the complementary data of the receiver function waveform and Rayleigh surface wave phase velocity dispersion.Our results show that there are two separate LVZs(~3.5 km/s)surrounding the rigid Daliangshan subblock at crustal depths of approximately 30–40 km,providing new constraints on the geometry of the LVZs in our study region.The two LVZs obtained in this study may represent the middle crustal flow channels,through which the material in the center of the Tibetan Plateau extrudes to its southeast margin.Blocked by the rigid Sichuan Basin and the spindle-like Daliangshan subblock,the material continues to flow southward through the mechanically weak middle crustal channels surrounding the Daliangshan subblock.In addition,the existence of thin LVZs in the middle crust plays an important role in understanding the decoupling between the upper and lower crust in the study area.It also provides new constraint on the complex tectonic deformation process of the southeastern margin of the Tibetan Plateau caused by the collision and compression of the Indian and the Eurasian plates.展开更多
In order to constrain the crustal wave velocity structure in the southernTibetan crust and provide insight into the contribution of crustal composition, geothermal gradientand partial melting to the velocity structure...In order to constrain the crustal wave velocity structure in the southernTibetan crust and provide insight into the contribution of crustal composition, geothermal gradientand partial melting to the velocity structure, which is characterized by low average crustalvelocities and widespread presence of low-velocity zone(s), the authors model the crustal velocityand density as functions of depth corresponding to various heat flow values in light of velocitymeasurements at high temperature and high pressure. The modeled velocity and density are regarded ascomparison standards. The comparison of the standards with seismic observations in southern Tibetimplies that the predominantly felsic composition at high heat flow cannot explain the observedvelocity structure there. Hence, the authors are in favor of attributing low average crustalvelocities and low-velocity zone(s) observed in southern Tibet mainly to partial melting. Modelingbased on the experimental results suggests that a melting percentage of 7-12 could account for thelow-velocity zone(s).展开更多
According to the requirement of the project 'Establishment of the Physical Model of Earthquake PrecursorFields',this paper elucidates the train of thinking for research on the project and some scientific probl...According to the requirement of the project 'Establishment of the Physical Model of Earthquake PrecursorFields',this paper elucidates the train of thinking for research on the project and some scientific problems whichmust be studied i, the elucidation emphasizes that the core of this project is to study the conditions and processesof the generation of strong earthquakes. The paper first outlines the origin and development of the'strong-bodyearthquake-generating model' proposed by the author in the 1980;and then proves the reasonableness of themodel from three aspects, namely: deep structures, mechanical analysis and rock fracture experiments. Bystudying the tomographic image for the northern part of North China, it can be seen that the sources of strongearthquakes are all distributed in high-velocity bodies,or in the contact zone between high-velocity and lowvelocity bodies but nearer to the high-velocity body. It has been affirmed through studies of the mechanical modelsof hard and soft inclusions that the existence of a hard inclusion is an imPOrtant condition for the high concentration of large amounts of strain energy. A lot of theoretical and experimental studies have been made to investigate the conditions for rock instability; the results have consistently indicated that rock instability,sudden fracture and stress drop would be possible only if the stiffness of the source body is greater than the environmentalstiffness.展开更多
The Yellowstone volcano is one of the largest active volcanoes in the world, and its potential hazards demand detailed seismological and geodetic studies. Previous studies with travel time tomography and receiver func...The Yellowstone volcano is one of the largest active volcanoes in the world, and its potential hazards demand detailed seismological and geodetic studies. Previous studies with travel time tomography and receiver functions have revealed a low-velocity layer in the crust beneath the Yellowstone volcano, suggesting the presence of a magma chamber at depth. We use ambient seismic noise from regional seismic stations to retrieve short-period surface waves and then study the shallow shear velocity structure of the Yellowstone region by surface wave dispersion analysis. We first obtained a crustal model of the area outside of the Yellowstone volcano and then constructed an absolute shear wave velocity structure in combination with receiver function results for the crust beneath the Yellowstone volcano. The velocity model shows a low-velocity layer with shear velocity at around 1.3 km/s, suggesting that a large-scale magma chamber exists at shallow levels within the crust of the Yellowstone volcanic region.展开更多
Is the westerly rotation of the lithosphere an ephemeral accidental recent phenomenon or is it a stable process of Earth's geodynamics? The reason why the tidal drag has been questioned as the mechanism determinin...Is the westerly rotation of the lithosphere an ephemeral accidental recent phenomenon or is it a stable process of Earth's geodynamics? The reason why the tidal drag has been questioned as the mechanism determining the lithospheric shift relative to the underlying mantle is the apparent too high viscosity of the asthenosphere. However, plate boundaries asymmetries are a robust indication of the 'westerly'decoupling of the entire Earth's outer lithospheric shell and new studies support lower viscosities in the low-velocity layer(LVZ) atop the asthenosphere. Since the solid Earth tide oscillation is longer in one side relative to the other due to the contemporaneous Moon's revolution, we demonstrate that a non-linear rheological behavior is expected in the lithosphere mantle interplay. This may provide a sort of ratchet favoring lowering of the LVZ viscosity under shear, allowing decoupling in the LVZ and triggering the westerly motion of the lithosphere relative to the mantle.展开更多
The electrical conductance of 0.025 mol NaCl solution was measured at0.25-3.75 GPa and 20-370℃. As shown by the results, the conductance increases with temper-ature, and there is a liner relation between the reciproc...The electrical conductance of 0.025 mol NaCl solution was measured at0.25-3.75 GPa and 20-370℃. As shown by the results, the conductance increases with temper-ature, and there is a liner relation between the reciprocal of temperature and the logarithm ofthe conductance but their slopes are different at different pressures. The relations between theconductance and pressure is rather complex and there are some discontinuities: in the range of2.25-3.75 GPa, the conductance increases with the pressure; in the range of 1.25-2.0 GPa, theconductance is not related to the pressure; and at a pressure of 0.75 GPa, the conductance ishigher than that at the pressures nearby. This reflects that the NaCl solution has rather differentproperties of electronic chemistry at various pressures, and probably is an important cause forthe existence of the layers with high electrical conductance and low velocity in the Earth's crustand mantle.展开更多
Here we present experimental results of compressional wave velocity (Vp) of muscovite-biotite gneiss from Higher Himalayan Crystallines (HHC) at the temperature up to 950℃ and the pressure of 0.1―400 MPa. At 400 MPa...Here we present experimental results of compressional wave velocity (Vp) of muscovite-biotite gneiss from Higher Himalayan Crystallines (HHC) at the temperature up to 950℃ and the pressure of 0.1―400 MPa. At 400 MPa, when the temperature is lower than 600℃, Vp decreases linearly with increasing temperature at the rate of (Vp/T)p -4.43×10-4 km/s ℃. In the temperature range of 600―800℃, Vp drops significantly and the signal is degraded gradually due to the dehydration of muscovite and α-quartz softening. When the temperature rises from 800℃ to 875℃, Vp increases and the signals become clear again as a result of the temperature going through the β-quartz range. The experiments indicate that the duration has great influence on the experimental results when temperature is above the dehydration point of biotite. During the first 30 h at 950℃, the Vp decreases substantially from 5.9 to 5.4 km/s and the signal amplitude is attenuated by more than 80%. After the 30-h transition, the Vp and the amplitude of ultrasonic wave signals become steady. The decrease of Vp and attenuation of the signals at 950℃ are associated with the breakdown reactions of biotite. The experiments suggest that the breakdown of muscovite and/or quartz softening can contribute to the low seismic wave velocity in thickened quartz-rich felsic-crust such as what is beneath southern Tibet. Additionally, α-β quartz transition generates a measurable high seismic velocity zone, which provides a possibility of precisely constraining the temperature in the upper-middle continental crust. Our study also demonstrates that duration is a key factor to obtain credible experimental results.展开更多
The wave velocity for two types of granitoids was measured using the analytic method of full-wave vibration at high pressure and high temperature. The laws of velocity changes for them differ with the pressure hoost a...The wave velocity for two types of granitoids was measured using the analytic method of full-wave vibration at high pressure and high temperature. The laws of velocity changes for them differ with the pressure hoost and temperature rise, and the velocity change of S-type is more violent than that of I-type. The 'softening point' of compressional wave velocity ( Vp) is also revealed during the measurement for two types of granitoids imitating the pressure and temperature at a certain depth. But the depth of 'softening', Vp after 'softening' and the percentage of Vp' s drop around the 'softening point' for two types of granitoids are obviously different. The depth of 'softening' is 15 km approximately and Vp after 'softening' is 5. 62 km/s for S-type granitoid. But for I-type granitoid the depth of 'softening' is 26 km approximately and Vp after 'softening' is 6. 08 km/s. Through careful analysis of rock slices after the experiment, it was found that the 'softening' of elastic-wave velocity is caused by the partial melting of granite. Combined with the results of geophysical prospecting, these results suggest that the low-velocity layers developing in the interior of Earth crust are related to the partial melting of different types of granitoids. The formation of the low-velocity layer in the upper-middle Earth crust is closely related to the development of S-type granitoid, but that in the lower Earth crust is closely related to the development of I-type granitoid.展开更多
Ⅰ. INTRODUCTION The coastal region of South China is located on the southeast tongue of Eurasian plate and borders on the Pacific plate in the east and on the Indian plate in the southwest. Having been driven by thre...Ⅰ. INTRODUCTION The coastal region of South China is located on the southeast tongue of Eurasian plate and borders on the Pacific plate in the east and on the Indian plate in the southwest. Having been driven by three plates, the crust and upper mantle展开更多
文摘The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigated.The current study aims to carry out a dynamic analysis on the sandwich beam when the impactor hits the top face sheet with an initial velocity.For the layer analysis,the high-order shear deformation theory(HSDT)and Frostig's second model for the displacement fields of the core layer are used.The classical non-adhesive elastic contact theory and Hunter's principle are used to calculate the dynamic responses in terms of time.In order to validate the analytical method,the outcomes of the current investigation are compared with those gained by the experimental tests carried out by other researchers for a rectangular composite plate subject to the LVI.Finite element(FE)simulations are conducted by means of the ABAQUS software.The effects of the parameters such as foam modulus,layer material,fiber angle,impactor mass,and its velocity on the generated voltage are reviewed.
基金State Natural Science Foundation of China (40074008) and State Key Basic Research Development and Program-ming Project (G1998040702).
文摘In this article, we analyze the dynamic characteristics of head wave in multi-layered half-space media models with high-velocity layer or low-velocity layer, and the model with a continuous transition-zone between the crust and the mantle by using synthetic seismogram. It is concluded that the dynamic characteristics of head wave are sensitive to the thickness and velocity of the high-velocity layer. There is obvious diffraction phenomenon of seismic wave if the thickness of high-velocity layer is very small compared with the characteristic wavelength. In this case, the high-velocity layer cannot shield the head wave propagating along the upper interface of the media below it, and the amplitude of this head wave is proportional to the thickness or the velocity of the high-velocity layer. When the thickness of high-velocity layer is nearly identical to the characteristic wavelength of seismic wave, the wave phases reflected from the bottom of the high-velocity layer and the head wave phase may have very close arrival and weaken each other because of destructive interference. As to low-velocity layer, the amplitude of the head wave is weak and decreases with the velocity of this layer. It is also found that if a continuous transition-zone between the crust and the mantle is introduced, we can get a strong apparent head wave phase in synthetic seismogram and the amplitude of this phase increases with the thickness or velocity gradient of the transition-zone.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC1500302)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB18000000)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(Grant No.2020QNRC001)。
文摘Intracrustal low-velocity zones(LVZs)indicate a mechanically weak crust and are widely observed in the southeast margin of the Tibetan Plateau.However,their spatial distributions and formation mechanisms remain controversial.To investigate their distribution and detailed morphology of the LVZs in the southeastern Tibetan Plateau,here we used teleseismic events and continuous waveform data recorded by 40 broadband seismic stations newly deployed in the Sichuan-Yunnan region from December 2018 to October 2020.A total of 12,924 high-quality P-wave receiver functions and 5–40 s fundamental Rayleigh surface wave phase velocity dispersion curves from ambient noise cross-correlation functions were obtained.The Swave velocity model at a depth interval of 0–100 km in the study area was inverted by using the trans-dimensional Markov chain Monte Carlo strategy to jointly invert the complementary data of the receiver function waveform and Rayleigh surface wave phase velocity dispersion.Our results show that there are two separate LVZs(~3.5 km/s)surrounding the rigid Daliangshan subblock at crustal depths of approximately 30–40 km,providing new constraints on the geometry of the LVZs in our study region.The two LVZs obtained in this study may represent the middle crustal flow channels,through which the material in the center of the Tibetan Plateau extrudes to its southeast margin.Blocked by the rigid Sichuan Basin and the spindle-like Daliangshan subblock,the material continues to flow southward through the mechanically weak middle crustal channels surrounding the Daliangshan subblock.In addition,the existence of thin LVZs in the middle crust plays an important role in understanding the decoupling between the upper and lower crust in the study area.It also provides new constraint on the complex tectonic deformation process of the southeastern margin of the Tibetan Plateau caused by the collision and compression of the Indian and the Eurasian plates.
基金supported by the Key Basic Research and Development Program of China(G19980407000)the National Natural Science Foundation of China(40072062)+1 种基金the Foundation of the Open Laboratory of Tectonophysics,China Seismological Bureauthe Post-Doctoral Grant of Ministry of Education,China.
文摘In order to constrain the crustal wave velocity structure in the southernTibetan crust and provide insight into the contribution of crustal composition, geothermal gradientand partial melting to the velocity structure, which is characterized by low average crustalvelocities and widespread presence of low-velocity zone(s), the authors model the crustal velocityand density as functions of depth corresponding to various heat flow values in light of velocitymeasurements at high temperature and high pressure. The modeled velocity and density are regarded ascomparison standards. The comparison of the standards with seismic observations in southern Tibetimplies that the predominantly felsic composition at high heat flow cannot explain the observedvelocity structure there. Hence, the authors are in favor of attributing low average crustalvelocities and low-velocity zone(s) observed in southern Tibet mainly to partial melting. Modelingbased on the experimental results suggests that a melting percentage of 7-12 could account for thelow-velocity zone(s).
文摘According to the requirement of the project 'Establishment of the Physical Model of Earthquake PrecursorFields',this paper elucidates the train of thinking for research on the project and some scientific problems whichmust be studied i, the elucidation emphasizes that the core of this project is to study the conditions and processesof the generation of strong earthquakes. The paper first outlines the origin and development of the'strong-bodyearthquake-generating model' proposed by the author in the 1980;and then proves the reasonableness of themodel from three aspects, namely: deep structures, mechanical analysis and rock fracture experiments. Bystudying the tomographic image for the northern part of North China, it can be seen that the sources of strongearthquakes are all distributed in high-velocity bodies,or in the contact zone between high-velocity and lowvelocity bodies but nearer to the high-velocity body. It has been affirmed through studies of the mechanical modelsof hard and soft inclusions that the existence of a hard inclusion is an imPOrtant condition for the high concentration of large amounts of strain energy. A lot of theoretical and experimental studies have been made to investigate the conditions for rock instability; the results have consistently indicated that rock instability,sudden fracture and stress drop would be possible only if the stiffness of the source body is greater than the environmentalstiffness.
基金supported by China Postdoctoral Science Foundation 2012M510043,2013T60166,NSFC 41074032 and CAS KZCX2-EW-121
文摘The Yellowstone volcano is one of the largest active volcanoes in the world, and its potential hazards demand detailed seismological and geodetic studies. Previous studies with travel time tomography and receiver functions have revealed a low-velocity layer in the crust beneath the Yellowstone volcano, suggesting the presence of a magma chamber at depth. We use ambient seismic noise from regional seismic stations to retrieve short-period surface waves and then study the shallow shear velocity structure of the Yellowstone region by surface wave dispersion analysis. We first obtained a crustal model of the area outside of the Yellowstone volcano and then constructed an absolute shear wave velocity structure in combination with receiver function results for the crust beneath the Yellowstone volcano. The velocity model shows a low-velocity layer with shear velocity at around 1.3 km/s, suggesting that a large-scale magma chamber exists at shallow levels within the crust of the Yellowstone volcanic region.
文摘Is the westerly rotation of the lithosphere an ephemeral accidental recent phenomenon or is it a stable process of Earth's geodynamics? The reason why the tidal drag has been questioned as the mechanism determining the lithospheric shift relative to the underlying mantle is the apparent too high viscosity of the asthenosphere. However, plate boundaries asymmetries are a robust indication of the 'westerly'decoupling of the entire Earth's outer lithospheric shell and new studies support lower viscosities in the low-velocity layer(LVZ) atop the asthenosphere. Since the solid Earth tide oscillation is longer in one side relative to the other due to the contemporaneous Moon's revolution, we demonstrate that a non-linear rheological behavior is expected in the lithosphere mantle interplay. This may provide a sort of ratchet favoring lowering of the LVZ viscosity under shear, allowing decoupling in the LVZ and triggering the westerly motion of the lithosphere relative to the mantle.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.49573192 and 49603049)
文摘The electrical conductance of 0.025 mol NaCl solution was measured at0.25-3.75 GPa and 20-370℃. As shown by the results, the conductance increases with temper-ature, and there is a liner relation between the reciprocal of temperature and the logarithm ofthe conductance but their slopes are different at different pressures. The relations between theconductance and pressure is rather complex and there are some discontinuities: in the range of2.25-3.75 GPa, the conductance increases with the pressure; in the range of 1.25-2.0 GPa, theconductance is not related to the pressure; and at a pressure of 0.75 GPa, the conductance ishigher than that at the pressures nearby. This reflects that the NaCl solution has rather differentproperties of electronic chemistry at various pressures, and probably is an important cause forthe existence of the layers with high electrical conductance and low velocity in the Earth's crustand mantle.
基金Supported by Key Foundational Research and Development Program of China (Grant No.2004CB418405) the National Natural Science Foundation of China (Grant No. 40472113)
文摘Here we present experimental results of compressional wave velocity (Vp) of muscovite-biotite gneiss from Higher Himalayan Crystallines (HHC) at the temperature up to 950℃ and the pressure of 0.1―400 MPa. At 400 MPa, when the temperature is lower than 600℃, Vp decreases linearly with increasing temperature at the rate of (Vp/T)p -4.43×10-4 km/s ℃. In the temperature range of 600―800℃, Vp drops significantly and the signal is degraded gradually due to the dehydration of muscovite and α-quartz softening. When the temperature rises from 800℃ to 875℃, Vp increases and the signals become clear again as a result of the temperature going through the β-quartz range. The experiments indicate that the duration has great influence on the experimental results when temperature is above the dehydration point of biotite. During the first 30 h at 950℃, the Vp decreases substantially from 5.9 to 5.4 km/s and the signal amplitude is attenuated by more than 80%. After the 30-h transition, the Vp and the amplitude of ultrasonic wave signals become steady. The decrease of Vp and attenuation of the signals at 950℃ are associated with the breakdown reactions of biotite. The experiments suggest that the breakdown of muscovite and/or quartz softening can contribute to the low seismic wave velocity in thickened quartz-rich felsic-crust such as what is beneath southern Tibet. Additionally, α-β quartz transition generates a measurable high seismic velocity zone, which provides a possibility of precisely constraining the temperature in the upper-middle continental crust. Our study also demonstrates that duration is a key factor to obtain credible experimental results.
文摘The wave velocity for two types of granitoids was measured using the analytic method of full-wave vibration at high pressure and high temperature. The laws of velocity changes for them differ with the pressure hoost and temperature rise, and the velocity change of S-type is more violent than that of I-type. The 'softening point' of compressional wave velocity ( Vp) is also revealed during the measurement for two types of granitoids imitating the pressure and temperature at a certain depth. But the depth of 'softening', Vp after 'softening' and the percentage of Vp' s drop around the 'softening point' for two types of granitoids are obviously different. The depth of 'softening' is 15 km approximately and Vp after 'softening' is 5. 62 km/s for S-type granitoid. But for I-type granitoid the depth of 'softening' is 26 km approximately and Vp after 'softening' is 6. 08 km/s. Through careful analysis of rock slices after the experiment, it was found that the 'softening' of elastic-wave velocity is caused by the partial melting of granite. Combined with the results of geophysical prospecting, these results suggest that the low-velocity layers developing in the interior of Earth crust are related to the partial melting of different types of granitoids. The formation of the low-velocity layer in the upper-middle Earth crust is closely related to the development of S-type granitoid, but that in the lower Earth crust is closely related to the development of I-type granitoid.
文摘Ⅰ. INTRODUCTION The coastal region of South China is located on the southeast tongue of Eurasian plate and borders on the Pacific plate in the east and on the Indian plate in the southwest. Having been driven by three plates, the crust and upper mantle