Microstructures and inclusions in the Si-Mn-Ti deoxidized steels after cooling in the furnace were investigated. The composition and morphology of the inclusions were analyzed using a field emission scanning electron ...Microstructures and inclusions in the Si-Mn-Ti deoxidized steels after cooling in the furnace were investigated. The composition and morphology of the inclusions were analyzed using a field emission scanning electron microscope (FE-SEM) with energy dispersive X-ray spectrometry (EDS). The kind and composition of the inclusions calculated from the thermodynamic database were in good agreement with the experimental results. There were two main kinds of inclusions formed in the Si-Mn-Ti deoxidized steels. One kind of inclusion was the manganese titanium oxide (Mn-Ti oxide). Another kind of inclusion was the MnS inclusion with segregation points containing Ti and N. According to the thermodynamic calculation, those segregation points were TiN precipitates. The formation of intragranular ferrite (IGF) microstructures refined the grain size during the austenite-ferrite transformation. The mechanisms of IGF formation were discussed. Mn-Ti oxide inclusions with Mn-depleted zone (MDZ) were effective to be nucleation sites for IGF formation, because the MDZ increased the austenite-ferrite transformation temperature. TiN had the low misfit ratio with IGF, so the TiN precipitated on the MnS surface also promoted the formation of IGF because of decreasing interfacial energies.展开更多
Intragranular ferrite was formed at inclusions in a vanadium microalloyed steel with excess amount of sulfur. The chemical composition of inclusions in the steel was analyzed by SEM-EDS. The inclusions were mainly com...Intragranular ferrite was formed at inclusions in a vanadium microalloyed steel with excess amount of sulfur. The chemical composition of inclusions in the steel was analyzed by SEM-EDS. The inclusions were mainly composed of MnS and aluminum oxides. The precipitation of MnS at aluminum oxides might result in Mn depletion, which, in turn, pro- motes the formation of intragranular ferrite. Optical and SEM observations and three- dimensional (3D) reconstruction demonstrated that intragranular ferrite was formed at inclusions. The morphology of intragranular ferrite changed with undercooling. At higher temperatures intragranular ferrite was nearly equiaxed whereas it was plate-like or lath-like at lower temperatures.展开更多
MnS, MnS+V(C, N) complex precipitates in micro-alloyed ultra-fine grained steels were precisely analyzed to investigate the grain refining mechanism. The experimental results shows that MnS, MnS+V(C, N) precipit...MnS, MnS+V(C, N) complex precipitates in micro-alloyed ultra-fine grained steels were precisely analyzed to investigate the grain refining mechanism. The experimental results shows that MnS, MnS+V(C, N) precipitates provide nucleation center for Intra-granular ferrite (IGF), so that refined grain remarkably. Moreover, substructures such as grain boundary, sub-boundary, distortion band, dislocation and dislocation cell in austenite increased as the deformation energy led by heavy deformation at low temperature (deformation temperature≤800 ℃, deformation quantity≥50%). As a result, V(C, N) nanophase precipitated at these substructures, which pinned and stabilized substructures. The substructures rotated and transformed into ultra-fine ferrite. 20 nm-50 nm were the best grain size range of V(C, N) as it provided nucleating center for intragranular ferrite. The grain size of V(C, N) were less than 30 nm in the microalloyed steels that with volume ratio of ultra-fine ferrite more than 80% and grain size less than 4 μm.展开更多
To improve the competitive relationship between strength and toughness,the effect of low undercooling in austenite(γ)on the microstructure and mechanical properties of commercial vanadium-containing wheel steels was ...To improve the competitive relationship between strength and toughness,the effect of low undercooling in austenite(γ)on the microstructure and mechanical properties of commercial vanadium-containing wheel steels was studied using an optical microscope(OM),a scanning electron microscope(SEM),a transmission electron microscope(TEM),and mechanical property tests.The results show that when the wheel steel is slightly cooled to an appropriate temperature above A c3 point for a short time after it has been austenitized at an elevated temperature,the solid-solved vanadium is pre-precipitated in the form of V(C,N)second phase semicoherent with the matrix in the originalγgrain.This phase hardly participates in matrix strengthening.Due to the small mismatch between V(C,N)and ferrite(α),during the subsequent-cooling phase transformation stage,the pre-precipitated second phase becomes theαnucleation point,causing granular and ellipsoidal intragranular ferrite(IGF,with an average size of 4-6μm)to nucleate in the originalγ.The IGF production and strength loss increases with the increasing undercooling degree.Based on this,Masteel Co.,Ltd.has developed a new heat-treatment step-cooling process that can promote the formation of IGF,considerably improving the level and uniformity of fracture toughness on the premise that the strength and hardness of the wheel are almost unchanged.展开更多
The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles du...The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles during welding.The chaotically oriented IAF and refined PAGs inhibit crack initiation and propagation in the steel,resulting in high impact toughness.This work summarizes the com-bined effect of deoxidizers and alloying elements,with the aim to provide a new perspective for the research and practice related to im-proving the impact toughness of the heat affected zone(HAZ)during the high heat input welding.Ti complex deoxidation with other strong deoxidants,such as Mg,Ca,Zr,and rare earth metals(REMs),can improve the toughness of the heat-affected zone(HAZ)by re-fining PAGs or increasing IAF contents.However,it is difficult to identify the specific phase responsible for IAF nucleation because ef-fective inclusions formed by complex deoxidation are usually multiphase.Increasing alloying elements,such as C,Si,Al,Nb,or Cr,con-tents can impair HAZ toughness.A high C content typically increases the number of coarse carbides and decreases the potency of IAF formation.Si,Cr,or Al addition leads to the formation of undesirable microstructures.Nb reduces the high-temperature stability of the precipitates.Mo,V,and B can enhance HAZ toughness.Mo-containing precipitates present good thermal stability.VN or V(C,N)is ef-fective in promoting IAF nucleation due to its good coherent crystallographic relationship with ferrite.The formation of the B-depleted zone around the inclusion promotes IAF formation.The interactions between alloying elements are complex,and the effect of adding dif-ferent alloying elements remains to be evaluated.In the future,the interactions between various alloying elements and their effects on ox-ide metallurgy,as well as the calculation of the nucleation effects of effective inclusions using first principles calculations will become the focus of oxide metallurgy.展开更多
文摘Microstructures and inclusions in the Si-Mn-Ti deoxidized steels after cooling in the furnace were investigated. The composition and morphology of the inclusions were analyzed using a field emission scanning electron microscope (FE-SEM) with energy dispersive X-ray spectrometry (EDS). The kind and composition of the inclusions calculated from the thermodynamic database were in good agreement with the experimental results. There were two main kinds of inclusions formed in the Si-Mn-Ti deoxidized steels. One kind of inclusion was the manganese titanium oxide (Mn-Ti oxide). Another kind of inclusion was the MnS inclusion with segregation points containing Ti and N. According to the thermodynamic calculation, those segregation points were TiN precipitates. The formation of intragranular ferrite (IGF) microstructures refined the grain size during the austenite-ferrite transformation. The mechanisms of IGF formation were discussed. Mn-Ti oxide inclusions with Mn-depleted zone (MDZ) were effective to be nucleation sites for IGF formation, because the MDZ increased the austenite-ferrite transformation temperature. TiN had the low misfit ratio with IGF, so the TiN precipitated on the MnS surface also promoted the formation of IGF because of decreasing interfacial energies.
基金the Nationual Natural Science Foundation of China(No.50471107).
文摘Intragranular ferrite was formed at inclusions in a vanadium microalloyed steel with excess amount of sulfur. The chemical composition of inclusions in the steel was analyzed by SEM-EDS. The inclusions were mainly composed of MnS and aluminum oxides. The precipitation of MnS at aluminum oxides might result in Mn depletion, which, in turn, pro- motes the formation of intragranular ferrite. Optical and SEM observations and three- dimensional (3D) reconstruction demonstrated that intragranular ferrite was formed at inclusions. The morphology of intragranular ferrite changed with undercooling. At higher temperatures intragranular ferrite was nearly equiaxed whereas it was plate-like or lath-like at lower temperatures.
基金Funded by the National Natural Science Foundation of China (50475125)the Universities Natural Science Fund Key Project of Jiangsu Province(04KJA430021)
文摘MnS, MnS+V(C, N) complex precipitates in micro-alloyed ultra-fine grained steels were precisely analyzed to investigate the grain refining mechanism. The experimental results shows that MnS, MnS+V(C, N) precipitates provide nucleation center for Intra-granular ferrite (IGF), so that refined grain remarkably. Moreover, substructures such as grain boundary, sub-boundary, distortion band, dislocation and dislocation cell in austenite increased as the deformation energy led by heavy deformation at low temperature (deformation temperature≤800 ℃, deformation quantity≥50%). As a result, V(C, N) nanophase precipitated at these substructures, which pinned and stabilized substructures. The substructures rotated and transformed into ultra-fine ferrite. 20 nm-50 nm were the best grain size range of V(C, N) as it provided nucleating center for intragranular ferrite. The grain size of V(C, N) were less than 30 nm in the microalloyed steels that with volume ratio of ultra-fine ferrite more than 80% and grain size less than 4 μm.
文摘To improve the competitive relationship between strength and toughness,the effect of low undercooling in austenite(γ)on the microstructure and mechanical properties of commercial vanadium-containing wheel steels was studied using an optical microscope(OM),a scanning electron microscope(SEM),a transmission electron microscope(TEM),and mechanical property tests.The results show that when the wheel steel is slightly cooled to an appropriate temperature above A c3 point for a short time after it has been austenitized at an elevated temperature,the solid-solved vanadium is pre-precipitated in the form of V(C,N)second phase semicoherent with the matrix in the originalγgrain.This phase hardly participates in matrix strengthening.Due to the small mismatch between V(C,N)and ferrite(α),during the subsequent-cooling phase transformation stage,the pre-precipitated second phase becomes theαnucleation point,causing granular and ellipsoidal intragranular ferrite(IGF,with an average size of 4-6μm)to nucleate in the originalγ.The IGF production and strength loss increases with the increasing undercooling degree.Based on this,Masteel Co.,Ltd.has developed a new heat-treatment step-cooling process that can promote the formation of IGF,considerably improving the level and uniformity of fracture toughness on the premise that the strength and hardness of the wheel are almost unchanged.
基金supported by the National Natural Science Foundation of China(No.U1960202).
文摘The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles during welding.The chaotically oriented IAF and refined PAGs inhibit crack initiation and propagation in the steel,resulting in high impact toughness.This work summarizes the com-bined effect of deoxidizers and alloying elements,with the aim to provide a new perspective for the research and practice related to im-proving the impact toughness of the heat affected zone(HAZ)during the high heat input welding.Ti complex deoxidation with other strong deoxidants,such as Mg,Ca,Zr,and rare earth metals(REMs),can improve the toughness of the heat-affected zone(HAZ)by re-fining PAGs or increasing IAF contents.However,it is difficult to identify the specific phase responsible for IAF nucleation because ef-fective inclusions formed by complex deoxidation are usually multiphase.Increasing alloying elements,such as C,Si,Al,Nb,or Cr,con-tents can impair HAZ toughness.A high C content typically increases the number of coarse carbides and decreases the potency of IAF formation.Si,Cr,or Al addition leads to the formation of undesirable microstructures.Nb reduces the high-temperature stability of the precipitates.Mo,V,and B can enhance HAZ toughness.Mo-containing precipitates present good thermal stability.VN or V(C,N)is ef-fective in promoting IAF nucleation due to its good coherent crystallographic relationship with ferrite.The formation of the B-depleted zone around the inclusion promotes IAF formation.The interactions between alloying elements are complex,and the effect of adding dif-ferent alloying elements remains to be evaluated.In the future,the interactions between various alloying elements and their effects on ox-ide metallurgy,as well as the calculation of the nucleation effects of effective inclusions using first principles calculations will become the focus of oxide metallurgy.