Microstructures and inclusions in the Si-Mn-Ti deoxidized steels after cooling in the furnace were investigated. The composition and morphology of the inclusions were analyzed using a field emission scanning electron ...Microstructures and inclusions in the Si-Mn-Ti deoxidized steels after cooling in the furnace were investigated. The composition and morphology of the inclusions were analyzed using a field emission scanning electron microscope (FE-SEM) with energy dispersive X-ray spectrometry (EDS). The kind and composition of the inclusions calculated from the thermodynamic database were in good agreement with the experimental results. There were two main kinds of inclusions formed in the Si-Mn-Ti deoxidized steels. One kind of inclusion was the manganese titanium oxide (Mn-Ti oxide). Another kind of inclusion was the MnS inclusion with segregation points containing Ti and N. According to the thermodynamic calculation, those segregation points were TiN precipitates. The formation of intragranular ferrite (IGF) microstructures refined the grain size during the austenite-ferrite transformation. The mechanisms of IGF formation were discussed. Mn-Ti oxide inclusions with Mn-depleted zone (MDZ) were effective to be nucleation sites for IGF formation, because the MDZ increased the austenite-ferrite transformation temperature. TiN had the low misfit ratio with IGF, so the TiN precipitated on the MnS surface also promoted the formation of IGF because of decreasing interfacial energies.展开更多
Intragranular ferrite was formed at inclusions in a vanadium microalloyed steel with excess amount of sulfur. The chemical composition of inclusions in the steel was analyzed by SEM-EDS. The inclusions were mainly com...Intragranular ferrite was formed at inclusions in a vanadium microalloyed steel with excess amount of sulfur. The chemical composition of inclusions in the steel was analyzed by SEM-EDS. The inclusions were mainly composed of MnS and aluminum oxides. The precipitation of MnS at aluminum oxides might result in Mn depletion, which, in turn, pro- motes the formation of intragranular ferrite. Optical and SEM observations and three- dimensional (3D) reconstruction demonstrated that intragranular ferrite was formed at inclusions. The morphology of intragranular ferrite changed with undercooling. At higher temperatures intragranular ferrite was nearly equiaxed whereas it was plate-like or lath-like at lower temperatures.展开更多
MnS, MnS+V(C, N) complex precipitates in micro-alloyed ultra-fine grained steels were precisely analyzed to investigate the grain refining mechanism. The experimental results shows that MnS, MnS+V(C, N) precipit...MnS, MnS+V(C, N) complex precipitates in micro-alloyed ultra-fine grained steels were precisely analyzed to investigate the grain refining mechanism. The experimental results shows that MnS, MnS+V(C, N) precipitates provide nucleation center for Intra-granular ferrite (IGF), so that refined grain remarkably. Moreover, substructures such as grain boundary, sub-boundary, distortion band, dislocation and dislocation cell in austenite increased as the deformation energy led by heavy deformation at low temperature (deformation temperature≤800 ℃, deformation quantity≥50%). As a result, V(C, N) nanophase precipitated at these substructures, which pinned and stabilized substructures. The substructures rotated and transformed into ultra-fine ferrite. 20 nm-50 nm were the best grain size range of V(C, N) as it provided nucleating center for intragranular ferrite. The grain size of V(C, N) were less than 30 nm in the microalloyed steels that with volume ratio of ultra-fine ferrite more than 80% and grain size less than 4 μm.展开更多
To improve the competitive relationship between strength and toughness,the effect of low undercooling in austenite(γ)on the microstructure and mechanical properties of commercial vanadium-containing wheel steels was ...To improve the competitive relationship between strength and toughness,the effect of low undercooling in austenite(γ)on the microstructure and mechanical properties of commercial vanadium-containing wheel steels was studied using an optical microscope(OM),a scanning electron microscope(SEM),a transmission electron microscope(TEM),and mechanical property tests.The results show that when the wheel steel is slightly cooled to an appropriate temperature above A c3 point for a short time after it has been austenitized at an elevated temperature,the solid-solved vanadium is pre-precipitated in the form of V(C,N)second phase semicoherent with the matrix in the originalγgrain.This phase hardly participates in matrix strengthening.Due to the small mismatch between V(C,N)and ferrite(α),during the subsequent-cooling phase transformation stage,the pre-precipitated second phase becomes theαnucleation point,causing granular and ellipsoidal intragranular ferrite(IGF,with an average size of 4-6μm)to nucleate in the originalγ.The IGF production and strength loss increases with the increasing undercooling degree.Based on this,Masteel Co.,Ltd.has developed a new heat-treatment step-cooling process that can promote the formation of IGF,considerably improving the level and uniformity of fracture toughness on the premise that the strength and hardness of the wheel are almost unchanged.展开更多
The effects of Mg content, inclusion size, and austenite grain size on the intragranular acicular ferrite (IAF) nucleation in heat-affected zone of steel plate after high-heat-input welding of 400 kJ/cm were investi...The effects of Mg content, inclusion size, and austenite grain size on the intragranular acicular ferrite (IAF) nucleation in heat-affected zone of steel plate after high-heat-input welding of 400 kJ/cm were investigated by welding simulation and observation using a scanning electron microscope equipped with an energy dispersive spectrometer and an optical microscope. The IAFs are observed in steel with Mg addition, and the volume fraction of IAF is as high as 55.4% in the steel containing 0.0027 mass% Mg. The MgO-Al2O3-Ti2O3-MnS inclusions with size around 2 μm are effective nucleation sites for IAF, whereas Al2O3-MnS inclusions are impotent to nucleate the acicular ferrite. The prior-austenite grain (PAG) size distribution in low Mg steel is similar to that in steel without Mg addition. The austenite grain with size about 200 μm is favorable for the IAF formation. In the steel with high Mg content of 0.0099%, the growth of PAG is greatly inhibited, and PAG sizes are smaller than 100 μm. Therefore, the nucleation of IAF can hardly be observed.展开更多
By using a Gleeble 350013 thermo-mechanical simulator, the nucleation behavior of intragranular acicular ferrites (IAF) was studied in a Ti-killed C-Mn steel. During continuous cooling transformation, the allotriomo...By using a Gleeble 350013 thermo-mechanical simulator, the nucleation behavior of intragranular acicular ferrites (IAF) was studied in a Ti-killed C-Mn steel. During continuous cooling transformation, the allotriomorphic ferrite (AF) and ferrite side plate (FSP) microstructures grew more rapidly with the temperature decreasing from 800 to 650 ℃, and the IAF microstructure was dominant within austenite grain with further cooling to 600 ℃. The diffusion bonding experiment and the effect of C, Mn and Si concentrations on the Ao3 temperature by thermodynam- ic calculation confirm that Ti2O3 itself absorbs neighboring Mn atoms to form Mn-depleted zone (MDZ), which pro- motes the nucleation of IAF microstructure effectively. High temperature holding tests indicate that the nucleation potential of IAF microstructure was lowered in the Ti-killed C-Mn steel when it was treated at high temperature (1250 ℃ ) for a longer time, which is attributed to the saturated absorption degree of Mn atoms by titanium oxide.展开更多
High grade pipeline steels were prepared using vacuum carbon deoxidization process combined with a final Ti-deoxidation process.The microstructure of the as-cast steels was investigated by using scanning electron micr...High grade pipeline steels were prepared using vacuum carbon deoxidization process combined with a final Ti-deoxidation process.The microstructure of the as-cast steels was investigated by using scanning electron microscopy(SEM)and transmission electron microscopy(TEM).SEM observation shows that the formation of intragranular ferrite(IGF)structure is induced by fine inclusions.TEM selected area diffraction(SAD)patterns and elemental distribution analysis indicate that these inclusions are mainly Ti2O3 and MnS.It is also found that Ti2O3 may act as nucleus in the formation of MnS during solidification process.Raman spectroscopic analysis demonstrates the presence of another phase,MnTiO3,which could be formed through entrapment of Mn by Ti2O3.It is believed that the formation of Mn-depleted region in the inclusions and thus the formation of MnTiO3 phase will increase the Mn pickup from matrix and promote the formation of IGF during solidification of molten steel.展开更多
The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles du...The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles during welding.The chaotically oriented IAF and refined PAGs inhibit crack initiation and propagation in the steel,resulting in high impact toughness.This work summarizes the com-bined effect of deoxidizers and alloying elements,with the aim to provide a new perspective for the research and practice related to im-proving the impact toughness of the heat affected zone(HAZ)during the high heat input welding.Ti complex deoxidation with other strong deoxidants,such as Mg,Ca,Zr,and rare earth metals(REMs),can improve the toughness of the heat-affected zone(HAZ)by re-fining PAGs or increasing IAF contents.However,it is difficult to identify the specific phase responsible for IAF nucleation because ef-fective inclusions formed by complex deoxidation are usually multiphase.Increasing alloying elements,such as C,Si,Al,Nb,or Cr,con-tents can impair HAZ toughness.A high C content typically increases the number of coarse carbides and decreases the potency of IAF formation.Si,Cr,or Al addition leads to the formation of undesirable microstructures.Nb reduces the high-temperature stability of the precipitates.Mo,V,and B can enhance HAZ toughness.Mo-containing precipitates present good thermal stability.VN or V(C,N)is ef-fective in promoting IAF nucleation due to its good coherent crystallographic relationship with ferrite.The formation of the B-depleted zone around the inclusion promotes IAF formation.The interactions between alloying elements are complex,and the effect of adding dif-ferent alloying elements remains to be evaluated.In the future,the interactions between various alloying elements and their effects on ox-ide metallurgy,as well as the calculation of the nucleation effects of effective inclusions using first principles calculations will become the focus of oxide metallurgy.展开更多
For a V-Ti-N microalloyed steel with 0.34%C-1.54%Mn,intragranular ferrite (IGF) was obtained in both isothermal austenite decomposition processes and thermomechanical processes simulating the industrial seamless tubin...For a V-Ti-N microalloyed steel with 0.34%C-1.54%Mn,intragranular ferrite (IGF) was obtained in both isothermal austenite decomposition processes and thermomechanical processes simulating the industrial seamless tubing manufacture process.Results show that with decrease of the isothermal temperature in range of 600℃ down to 450℃,not only the morphology of IGF changed from equiaxed to acicular,but also the equiaxed IGF and the acicular IGF were refined.More importantly,it is found that the amount of equiaxed ferrite increased significantly in the thermomechanical process sample water quenched from 550℃ after 800℃ deformation than that in the isothermally treated sample at 550℃ sample without hot deformation.It implies that appropriate controlled deformation with controlled cooling can significantly promote equiaxed IGF formation,and not solely rely on nucleation mechanisms related with inclusions.Hot deformation of austenite without dynamic and complete static recrystallization causes high energy regions,therefore further promotes the nucleation potency of IGF.展开更多
文摘Microstructures and inclusions in the Si-Mn-Ti deoxidized steels after cooling in the furnace were investigated. The composition and morphology of the inclusions were analyzed using a field emission scanning electron microscope (FE-SEM) with energy dispersive X-ray spectrometry (EDS). The kind and composition of the inclusions calculated from the thermodynamic database were in good agreement with the experimental results. There were two main kinds of inclusions formed in the Si-Mn-Ti deoxidized steels. One kind of inclusion was the manganese titanium oxide (Mn-Ti oxide). Another kind of inclusion was the MnS inclusion with segregation points containing Ti and N. According to the thermodynamic calculation, those segregation points were TiN precipitates. The formation of intragranular ferrite (IGF) microstructures refined the grain size during the austenite-ferrite transformation. The mechanisms of IGF formation were discussed. Mn-Ti oxide inclusions with Mn-depleted zone (MDZ) were effective to be nucleation sites for IGF formation, because the MDZ increased the austenite-ferrite transformation temperature. TiN had the low misfit ratio with IGF, so the TiN precipitated on the MnS surface also promoted the formation of IGF because of decreasing interfacial energies.
基金the Nationual Natural Science Foundation of China(No.50471107).
文摘Intragranular ferrite was formed at inclusions in a vanadium microalloyed steel with excess amount of sulfur. The chemical composition of inclusions in the steel was analyzed by SEM-EDS. The inclusions were mainly composed of MnS and aluminum oxides. The precipitation of MnS at aluminum oxides might result in Mn depletion, which, in turn, pro- motes the formation of intragranular ferrite. Optical and SEM observations and three- dimensional (3D) reconstruction demonstrated that intragranular ferrite was formed at inclusions. The morphology of intragranular ferrite changed with undercooling. At higher temperatures intragranular ferrite was nearly equiaxed whereas it was plate-like or lath-like at lower temperatures.
基金Funded by the National Natural Science Foundation of China (50475125)the Universities Natural Science Fund Key Project of Jiangsu Province(04KJA430021)
文摘MnS, MnS+V(C, N) complex precipitates in micro-alloyed ultra-fine grained steels were precisely analyzed to investigate the grain refining mechanism. The experimental results shows that MnS, MnS+V(C, N) precipitates provide nucleation center for Intra-granular ferrite (IGF), so that refined grain remarkably. Moreover, substructures such as grain boundary, sub-boundary, distortion band, dislocation and dislocation cell in austenite increased as the deformation energy led by heavy deformation at low temperature (deformation temperature≤800 ℃, deformation quantity≥50%). As a result, V(C, N) nanophase precipitated at these substructures, which pinned and stabilized substructures. The substructures rotated and transformed into ultra-fine ferrite. 20 nm-50 nm were the best grain size range of V(C, N) as it provided nucleating center for intragranular ferrite. The grain size of V(C, N) were less than 30 nm in the microalloyed steels that with volume ratio of ultra-fine ferrite more than 80% and grain size less than 4 μm.
文摘To improve the competitive relationship between strength and toughness,the effect of low undercooling in austenite(γ)on the microstructure and mechanical properties of commercial vanadium-containing wheel steels was studied using an optical microscope(OM),a scanning electron microscope(SEM),a transmission electron microscope(TEM),and mechanical property tests.The results show that when the wheel steel is slightly cooled to an appropriate temperature above A c3 point for a short time after it has been austenitized at an elevated temperature,the solid-solved vanadium is pre-precipitated in the form of V(C,N)second phase semicoherent with the matrix in the originalγgrain.This phase hardly participates in matrix strengthening.Due to the small mismatch between V(C,N)and ferrite(α),during the subsequent-cooling phase transformation stage,the pre-precipitated second phase becomes theαnucleation point,causing granular and ellipsoidal intragranular ferrite(IGF,with an average size of 4-6μm)to nucleate in the originalγ.The IGF production and strength loss increases with the increasing undercooling degree.Based on this,Masteel Co.,Ltd.has developed a new heat-treatment step-cooling process that can promote the formation of IGF,considerably improving the level and uniformity of fracture toughness on the premise that the strength and hardness of the wheel are almost unchanged.
文摘The effects of Mg content, inclusion size, and austenite grain size on the intragranular acicular ferrite (IAF) nucleation in heat-affected zone of steel plate after high-heat-input welding of 400 kJ/cm were investigated by welding simulation and observation using a scanning electron microscope equipped with an energy dispersive spectrometer and an optical microscope. The IAFs are observed in steel with Mg addition, and the volume fraction of IAF is as high as 55.4% in the steel containing 0.0027 mass% Mg. The MgO-Al2O3-Ti2O3-MnS inclusions with size around 2 μm are effective nucleation sites for IAF, whereas Al2O3-MnS inclusions are impotent to nucleate the acicular ferrite. The prior-austenite grain (PAG) size distribution in low Mg steel is similar to that in steel without Mg addition. The austenite grain with size about 200 μm is favorable for the IAF formation. In the steel with high Mg content of 0.0099%, the growth of PAG is greatly inhibited, and PAG sizes are smaller than 100 μm. Therefore, the nucleation of IAF can hardly be observed.
文摘By using a Gleeble 350013 thermo-mechanical simulator, the nucleation behavior of intragranular acicular ferrites (IAF) was studied in a Ti-killed C-Mn steel. During continuous cooling transformation, the allotriomorphic ferrite (AF) and ferrite side plate (FSP) microstructures grew more rapidly with the temperature decreasing from 800 to 650 ℃, and the IAF microstructure was dominant within austenite grain with further cooling to 600 ℃. The diffusion bonding experiment and the effect of C, Mn and Si concentrations on the Ao3 temperature by thermodynam- ic calculation confirm that Ti2O3 itself absorbs neighboring Mn atoms to form Mn-depleted zone (MDZ), which pro- motes the nucleation of IAF microstructure effectively. High temperature holding tests indicate that the nucleation potential of IAF microstructure was lowered in the Ti-killed C-Mn steel when it was treated at high temperature (1250 ℃ ) for a longer time, which is attributed to the saturated absorption degree of Mn atoms by titanium oxide.
基金Item Sponsored by Provincial Natural Science Foundation of Hubei Province of China(2006ABD006)Excellent Young Scientific and Technological Innovation Team Scheme of Hubei Universities of China(T200609)
文摘High grade pipeline steels were prepared using vacuum carbon deoxidization process combined with a final Ti-deoxidation process.The microstructure of the as-cast steels was investigated by using scanning electron microscopy(SEM)and transmission electron microscopy(TEM).SEM observation shows that the formation of intragranular ferrite(IGF)structure is induced by fine inclusions.TEM selected area diffraction(SAD)patterns and elemental distribution analysis indicate that these inclusions are mainly Ti2O3 and MnS.It is also found that Ti2O3 may act as nucleus in the formation of MnS during solidification process.Raman spectroscopic analysis demonstrates the presence of another phase,MnTiO3,which could be formed through entrapment of Mn by Ti2O3.It is believed that the formation of Mn-depleted region in the inclusions and thus the formation of MnTiO3 phase will increase the Mn pickup from matrix and promote the formation of IGF during solidification of molten steel.
基金supported by the National Natural Science Foundation of China(No.U1960202).
文摘The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles during welding.The chaotically oriented IAF and refined PAGs inhibit crack initiation and propagation in the steel,resulting in high impact toughness.This work summarizes the com-bined effect of deoxidizers and alloying elements,with the aim to provide a new perspective for the research and practice related to im-proving the impact toughness of the heat affected zone(HAZ)during the high heat input welding.Ti complex deoxidation with other strong deoxidants,such as Mg,Ca,Zr,and rare earth metals(REMs),can improve the toughness of the heat-affected zone(HAZ)by re-fining PAGs or increasing IAF contents.However,it is difficult to identify the specific phase responsible for IAF nucleation because ef-fective inclusions formed by complex deoxidation are usually multiphase.Increasing alloying elements,such as C,Si,Al,Nb,or Cr,con-tents can impair HAZ toughness.A high C content typically increases the number of coarse carbides and decreases the potency of IAF formation.Si,Cr,or Al addition leads to the formation of undesirable microstructures.Nb reduces the high-temperature stability of the precipitates.Mo,V,and B can enhance HAZ toughness.Mo-containing precipitates present good thermal stability.VN or V(C,N)is ef-fective in promoting IAF nucleation due to its good coherent crystallographic relationship with ferrite.The formation of the B-depleted zone around the inclusion promotes IAF formation.The interactions between alloying elements are complex,and the effect of adding dif-ferent alloying elements remains to be evaluated.In the future,the interactions between various alloying elements and their effects on ox-ide metallurgy,as well as the calculation of the nucleation effects of effective inclusions using first principles calculations will become the focus of oxide metallurgy.
基金support from Chinese National Nature Science Fund (Project No. 50271009 and No. 51071019)the Vanadium International Technical Committee (VANITEC) for their financial support
文摘For a V-Ti-N microalloyed steel with 0.34%C-1.54%Mn,intragranular ferrite (IGF) was obtained in both isothermal austenite decomposition processes and thermomechanical processes simulating the industrial seamless tubing manufacture process.Results show that with decrease of the isothermal temperature in range of 600℃ down to 450℃,not only the morphology of IGF changed from equiaxed to acicular,but also the equiaxed IGF and the acicular IGF were refined.More importantly,it is found that the amount of equiaxed ferrite increased significantly in the thermomechanical process sample water quenched from 550℃ after 800℃ deformation than that in the isothermally treated sample at 550℃ sample without hot deformation.It implies that appropriate controlled deformation with controlled cooling can significantly promote equiaxed IGF formation,and not solely rely on nucleation mechanisms related with inclusions.Hot deformation of austenite without dynamic and complete static recrystallization causes high energy regions,therefore further promotes the nucleation potency of IGF.