期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
INVESTIGATION ON THE COMPUTATIONAL PROPERTIES OF INTRANEURONAL DYNAMICS
1
作者 沙飞 甘强 +1 位作者 韦钰 彭鄂 《Journal of Electronics(China)》 1992年第4期305-311,共7页
This paper aims at exploring computational properties of dynamic processes in neu-ral systems,studying their mathematical formulation,and applying the results to artificial neuralnetwork modeling.The stimulus-response... This paper aims at exploring computational properties of dynamic processes in neu-ral systems,studying their mathematical formulation,and applying the results to artificial neuralnetwork modeling.The stimulus-response processes in neurons are first introduced briefly,thenproperties of neurons described by the Hodgkin-Huxley equations are analyzed.After studyinghow to simplify,the Hodgkin-Huxley equations while maintaining its properties,the concept of dy-namic neuron model is proposed.It is pointed out that the neuron model should include internalstates in order to obtain time-variant thresholds,such as refractory periods of neurons.Finallywe discuss problems related to neural network models based on pulse-stream communication andthe contribution of intraneuronal dynamics to collective properties of the neural network. 展开更多
关键词 NEURAL networks NEURON model intraneuronal DYNAMICS COMPUTATIONAL PROPERTY
下载PDF
Intraneuronal accumulation of Aβ42 induces age-dependent slowing of neuronal transmission in Drosophila 被引量:5
2
作者 Jing-Ya Lin Wen-An Wang +3 位作者 Xiao Zhang Hai-Yan Liu Xiao-Liang Zhao Fu-De Huang 《Neuroscience Bulletin》 SCIE CAS CSCD 2014年第2期185-190,共6页
Beta amyloid (Aβ42)-induced dysfunction and loss of synapses are believed to be major underlying mechanisms for the progressive loss of learning and memory abilities in Alzheimer's disease (AD). The vast majorit... Beta amyloid (Aβ42)-induced dysfunction and loss of synapses are believed to be major underlying mechanisms for the progressive loss of learning and memory abilities in Alzheimer's disease (AD). The vast majority of investigations on AD-related synaptic impairment focus on synaptic plasticity, especially the decline of long-term potentiation of synaptic transmission caused by extracellular Aβ42. Changes in other aspects of synaptic and neuronal functions are less studied or undiscovered. Here, we report that intraneuronal accumulation of Aβ42 induced an age- dependent slowing of neuronal transmission along pathways involving multiple synapses. 展开更多
关键词 neuronal transmission synaptic dysfunction LATENCY Alzheimer's disease intraneuronal betaamyloid
原文传递
Impairment of the nerve growth factor pathway driving amyloid accumulation in cholinergic neurons the incipit of the Alzheimer's disease story? 被引量:5
3
作者 Viviana Triaca Pietro Calissano 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第10期1553-1556,共4页
The current idea behind brain pathology is that disease is initiated by mild disturbances of common physiological processes. Overtime, the disruption of the neuronal homeostasis will determine irreversible degeneratio... The current idea behind brain pathology is that disease is initiated by mild disturbances of common physiological processes. Overtime, the disruption of the neuronal homeostasis will determine irreversible degeneration and neuronal apoptosis. This could be also true in the case of nerve growth factor (NGF) al- terations in sporadic Alzheimer's disease (AD), an age-related pathology characterized by cholinergic loss, amyloid plaques and neurofibrillary tangles. In fact, the pathway activated by NGF, a key neurotrophin for the metabolism of basal forebrain cholinergic neurons (BFCN), is one of the first homeostatic systems affected in prodromal AD. NGF signaling dysfunctions have been thought for decades to occur in AD late stages, as a mere consequence of amyloid-driven disruption of the retrograde axonal transport of neuro- trophins to BFCN. Nowadays, a wealth of knowledge is potentially opening a new scenario: NGF signaling impairment occurs at the onset of AD and correlates better than amyloid load with cognitive decline. The recent acceleration in the characterization of anatomical, functional and molecular profiles of early AD is aimed at maximizing the efficacy of existing treatments and setting novel therapies. Accordingly, the elucidation of the molecular events underlying APP metabolism regulation by the NGF pathway in the sep- to-hippocampal system is crucial for the identification of new target molecules to slow and eventually halt mild cognitive impairment (MCI) and its progression toward AD. 展开更多
关键词 Alzheimer's disease onset NGF pathway disturbances intraneuronal amyloid generation andrelease basal forebrain cholinergic neurons
下载PDF
Advances in the Pathogenesis of Alzheimer’s Disease:Focusing on Tau-Mediated Neurodegeneration 被引量:15
4
作者 Yale Duan Suzhen Dong +2 位作者 Feng Gu Yinghe Hu Zheng Zhao 《Translational Neurodegeneration》 SCIE CAS 2012年第1期192-198,共7页
In addition to senile plaques and cerebral amyloid angiopathy,the hyperphosphorylation of tau protein and formation of intraneuronal neurofibrillary tangles(NFTs)represents another neuropathological hallmark in AD bra... In addition to senile plaques and cerebral amyloid angiopathy,the hyperphosphorylation of tau protein and formation of intraneuronal neurofibrillary tangles(NFTs)represents another neuropathological hallmark in AD brain.Tau is a microtubule-associated protein and localizes predominantly in the axons of neurons with the primary function in maintaining microtubules stability.When the balance between tau phosphorylation and dephosphorylation is changed in favor of the former,tau is hyperphosphorylated and the level of the free tau fractions elevated.The hyperphosphorylation of tau protein and formation of NFTs represent a characteristic neuropathological feature in AD brain.We have discussed the role of Aβin AD in our previous review,this review focused on the recent advances in tau-mediated AD pathology,mainly including tau hyperphosphorylation,propagation of tau pathology and the relationship between tau and Aβ. 展开更多
关键词 Alzheimer’s disease TAU A-BETA TAUOPATHY Tau hyperphosphorylation intraneuronal neurofibrillary tangles
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部