A flame retardant containing multiple antiflaming elements usually exhibits high-efficient flame retardancy. Here, a novel P/N/Si-containing ammonium polyphosphate derivative(APTES-APP) is synthesized from ammonium po...A flame retardant containing multiple antiflaming elements usually exhibits high-efficient flame retardancy. Here, a novel P/N/Si-containing ammonium polyphosphate derivative(APTES-APP) is synthesized from ammonium polyphosphate(APP) and silane coupling agent(3-aminopropyl)triethoxysilane(APTES)via cation exchange, which is quite different in the chemical structure from APTES-modified APP for retaining silicon hydroxyls. APTES-APP is highly efficient for the epoxy resin. 8%(mass) APTES-APP imparts excellent flame retardancy to the epoxy resin, with a V-0 rating at the UL-94 test(1.6 mm)and an LOI value of 26%(vol). The peak heat release rate and total smoke production of the flameretardant epoxy resin are decreased by 68.1% and 31.3%, respectively. The synergy of P/N/Si contributes to the well-expanded char residue with a strong and dense surface layer, which is a very good barrier against heat and mass transfer. Besides, there is no significant deterioration in the mechanical properties of flame-retardant epoxy resin thanks to silicon hydroxyls forming hydrogen bonds with epoxy molecules. Meanwhile, other molecules can be grafted onto APTES-APP via these silicon hydroxyls, if needed.Briefly, this work has developed a new strategy for amino silane as flame retardants. In conjunction with a low-cost and simple preparation method, APTES-APP has a promising prospect in the high-performance flame-retardant epoxy.展开更多
Flame-retardant mechanism of magnesium oxychloride (M OC) in EP was in-vestigated by limiting oxygen index (LOI), XRD, SEM, TG-DTG and DSC. The results show that MOC performed well as an inorganic flame-retardant ...Flame-retardant mechanism of magnesium oxychloride (M OC) in EP was in-vestigated by limiting oxygen index (LOI), XRD, SEM, TG-DTG and DSC. The results show that MOC performed well as an inorganic flame-retardant in EP. When the content of MOC is 50%, the LOI of EP reaches 29.6% and mass of residual char reaches 9.6%. The flame retarde mechanism of MOC is due to the synergies of diluting, cooling, catalyzing char forming and obstructing effects.展开更多
Although epoxy resin has been widely used in various fields,it still suffers from some problems including brittleness and flammability.In this study,a new phosphonic acid,N,N-bis(phosphomethyl)glycine(GDMP),was prepar...Although epoxy resin has been widely used in various fields,it still suffers from some problems including brittleness and flammability.In this study,a new phosphonic acid,N,N-bis(phosphomethyl)glycine(GDMP),was prepared by Mannich reaction with bio-based glycine and then a novel layered zirconium phosphonate(ZrGDMP)was synthesized using GDMP and zirconyl chloride hydrate as reactants.The chemical structure of ZrGDMP was well characterized by 1 H and 31P NMR,SEM,XRD and XPS.The effect of ZrGDMP on the flame retardancy,smoke suppression,strengthening and toughening performances of the epoxy matrix was investigated and evaluated.TGA results indicated that compared with pure EP,ZrGDMP-EP composites showed higher char yield due to the catalytic charring effect of ZrGDMP.The pure EP exhibited high flammability,while ZrGDMP-EP composites possessed excellent thermal stability and remarkable fire resistance.The PHRR,THR,and TSP values of 3wt%ZrGDMP-EP were obviously declined by 39.6%,40.2%,and 24.9%compared to these of pure EP.Moreover,the tensile and impact tests implied that the addition of ZrGDMP can significantly reinforce the toughness as well as the strength of EP in terms of higher impact strength(24.8 kJ/m^(2))and tensile strength(57.7 MPa),which was mainly contributed to the uniform dispersion of ZrGDMP within the EP matrix.展开更多
An aliphatic epoxy monomer"polypropyleneglycol-diglycidylether(PPGDGE,YF878)"is loaded in the epoxy resins(EP)to evaluate the influence of epoxy structure on the blowing-out effect,which is caused by 9,10-dihydr...An aliphatic epoxy monomer"polypropyleneglycol-diglycidylether(PPGDGE,YF878)"is loaded in the epoxy resins(EP)to evaluate the influence of epoxy structure on the blowing-out effect,which is caused by 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide(DOPO)and octaphenyl silsesquioxane(OPS).The flame retarding properties of these EP composites were tested using the LOI and UL-94 procedures.The pyrolytic gases produced and the thermal stability of the EP composites with different flame retardants were detected by TGA-FTIR in air.The negative effect of YF878 was detected from the TTI,HRR,and p-HRR results after the cone calorimeter test.The char produced by the EP composites after the cone calorimeter test was investigated by FTIR.It is proposed that the aliphatic chain of the YF878 is easy to break down and produce combustible gases,so it does not easily form a crosslinked structure in the condensed phase.These results are very helpful for investigation of the conditions under which the blowing-out effect in epoxy resins can be caused by synergy of phosphorous and silicon.展开更多
Flame retardant epoxy resins were prepared by a simple mixed method using ammonium aluminum carbonate hydroxy hydrate (AACHH) as a halogen-free flame retardant. The prepared samples were characterized by X-ray diffr...Flame retardant epoxy resins were prepared by a simple mixed method using ammonium aluminum carbonate hydroxy hydrate (AACHH) as a halogen-free flame retardant. The prepared samples were characterized by X-ray diffraction, thermogravimetric and differential scanning calorimetry, scanning electron microscope and limiting oxygen index(LOI) experiments. Effects of AACHH content on LOI of epoxy resins/AACHH composite and flame retardant mechanism were investigated and discussed. Results show that AACHH exhibites excellent flame-retardant properties in epoxy resin(EP). When the content of AACHH was 47.4%, the LOI of EP reached 32.2%. Moreover, the initial and terminal decomposition temperature of EP increased by 48 ℃ and 40 ℃, respectively. The flame retarded mechanism of AACHH is due to the synergic flame retardant effects of diluting, cooling, decomposition resisting and obstructing.展开更多
A novel,versatile flame retardant substructure based on phosphorylated salicylic acid(SCP)is described and used in the synthesis of new flame retardants for HexFlowRTM6,a high-performance epoxy resin used in resin tr...A novel,versatile flame retardant substructure based on phosphorylated salicylic acid(SCP)is described and used in the synthesis of new flame retardants for HexFlowRTM6,a high-performance epoxy resin used in resin transfer molding processes as composite matrix.The starting material salicylic acid can be obtained from natural sources.SCP as reactive phosphorus chloride is converted with a novolak,a novolak containing 9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide(DOPO)substituents or DOPO-hydroquinone to flame retardants with sufficient thermal stability and high char yield.Additionally,these flame retardants are soluble in the resin as well as react into the epoxy network.The determined thermal stability and glass transition temperatures of flame retarded neat resin samples as well as the interlaminar shear strength of corresponding carbon fiber reinforced composite materials showed the applicability of these flame retardants.Neat resin samples and composites were tested for their flammability by UL94 and/or flame-retardant performance by cone calorimetry.All tested flame retardants decrease the peak of heat release rate by up to 54%for neat resin samples.A combination of DOPO and SCP in one flame retardant shows synergistic effects in char formation and the mode of action adapts to neat resin or fiber-reinforced samples,so there is efficient flame retardancy in both cases.Therefore,a tailoring of SCP based flame retardants is possible.Additionally,these flame retardants efficiently reduce fiber degradation during combustion of carbon fiber-reinforced epoxy resins as observed by scanning electron microscopy and energy dispersive X-ray spectroscopy.展开更多
In this work,a bio-based flame retardant(Cy-HEDP)was synthesized from cytosine and HEDP through a facile salt-forming reaction and embedded into epoxy matrix to improve the flame retardancy and smoke suppression perfo...In this work,a bio-based flame retardant(Cy-HEDP)was synthesized from cytosine and HEDP through a facile salt-forming reaction and embedded into epoxy matrix to improve the flame retardancy and smoke suppression performance.The product Cy-HEDP was well characterized by FTIR,^(1)H and^(31)P NMR and SEM tests.On the basis of the results,by adding 15 wt%Cy-HEDP,the EP15 can pass UL-94 V-0 rating,and the total smoke production(TSP)as well as total heat release(THR)can be decreased by 61.05%(from 22.61 to 8.7 m^(2)/m^(2))and 39.44%(from 103.19 to 62.50 MJ/m^(2))in comparison to the unfilled EP,reflecting the attenuated smoke toxicity and impeded heat generation.According to the analysis results of residual char,it can be concluded that Cy-HEDP possessed the ability to promote the formation of continuous and dense char layers,which would be a physical barrier to insulate oxygen and prevent heat feedback during the combustion of EP.This work provide inspiration towards developing bio-based flame retardant,probably extending the prospects to other polymeric material system.展开更多
The effects of a magnesium-based layered composite on the flammability of a phenolic epoxy resin(EP)are studied.In order to produce the required composite material,first,magnesium hydroxide,aluminum salt and deionized...The effects of a magnesium-based layered composite on the flammability of a phenolic epoxy resin(EP)are studied.In order to produce the required composite material,first,magnesium hydroxide,aluminum salt and deionized water are mixed into a reactor according to a certain proportion to induce a hydrothermal reaction;then,the feed liquid is filtered out using a solid-liquid separation procedure;finally,the material is dried and crushed.In order to evaluate its effects on the flammability of the EP,first,m-phenylenediamine is added to EP and vacuum defoamation is performed;then,EP is poured into a polytetrafluoroethylene mold,cooled to room temperature and demoulded;finally,the magnesium-based layered composite is added to EP,and its flame retardance is characterized by thermogravimetric analysis,limiting oxygen index and cone calorimetry.The X-ray diffraction patterns show that the baseline of magnesium-based layered composite is stable and the front shape is sharp and symmetrical when the molar ratio of magnesium to aluminium is 3.2:1;with the addition of magnesium-based layered composite,the initial pyrolysis temperature of EP of 10%,15%and 30%magnesium-based layered composite decreases to 318.2°C,317.9°C and 357.1°C,respectively.After the reaction,the amount of residual carbon increases to 0.1%,3.45%and 8.3%,and the limiting oxygen index increases by 28.3%,29.1%and 29.6%,respectively.The maximum heat release rate of cone calorimeter decreases gradually.The optimum molar ratio of Mg:Al for green synthesis is 3.2:1,and the NO_(3)-intercalated magnesium-based layered composite has the best flame retardance properties.展开更多
The most common process to manufacture advanced composites is the costly autoclave.One of the out-of-autoclave alternatives is the low-cost vacuum assisted resin infusion(VARI)which produces quality parts with less po...The most common process to manufacture advanced composites is the costly autoclave.One of the out-of-autoclave alternatives is the low-cost vacuum assisted resin infusion(VARI)which produces quality parts with less pollution.Epoxy resin is a widely used composite matrix resin,but its high flammability limits its use as interior composite parts for vehicles.The usual flame retardant for epoxy involves halogen,which is effective but has high smoke toxicity.As a result,halogen-free flame retardant epoxy resin systems become dominant.In this paper,phosphorus flame retardant was combined with benzoxazine(BOZ)to produce synergistic effect and achieve satisfactory flame retardance,as well as mechanical improvement for the epoxy resin.Differential scanning calorimetry(DSC),dynamic mechanical analysis(DMA),thermal gravitational analysis(TGA),the cone calorimeter(CC),and limiting oxygen index(LOI)were used to characterize the resins.The results showed significant improvement on the flame retardance of the synergistically modified resins.Specifically,the carbon residue increased by 113.6%,and the char thickness increased by 6 to 7 times,compared to those of the flammable benchmark resin.The LOI reached 33 and passed the UL94 V-0 vertical burn rating.The modified resins also exhibited adequate stability and viscosity suitable for VARI processes.展开更多
Quest for bio-based halogen-free green flame retardant has attracted many concerns in recent years.Herein a reactive functional flame retardant containing phosphorus VDP is synthesized from vanillin,9,10-dihydro-9-oxa...Quest for bio-based halogen-free green flame retardant has attracted many concerns in recent years.Herein a reactive functional flame retardant containing phosphorus VDP is synthesized from vanillin,9,10-dihydro-9-oxa-10-phosphophene-10-oxide(DOPO)and phenol via a facile way.VDP is characterized with^(1)H NMR,^(31)P NMR,FTIR and Time of Flight Mass Spectrometry,and used as a new reactive flame retardant for bisphenol epoxy thermosets.Thermogravimetry analysis shows that when the VDP loading is only 0.5P%(based on phosphorus content),the residue increases from 14.2%to 21.1%at 750℃ in N_(2)compare with neat DGEBA.Correspondingly,the limit oxygen index increased to 29.6%,and flame retardancy reaches UL-94 V0 grade.Micro combustion calorimetry(MCC)and cone calorimetry analyses demonstrate that VDP can significantly lower flammability of the epoxy thermoset.With only 0.5P%of VDP,the heat release rate,total heat release rate and smoke production are reduced markedly.At the same time,the mechanical properties of the modified epoxy thermosets are also improved.The impact strength increases by 34%and the flexural strength increased by 23%,with 1.5P%of VDP.In short,VDP not only improves the flame retardancy,but also improves the mechanical properties of the epoxy thermosets.展开更多
In recent years,research has focused heavily on the investigation of functionalized ammonium polyphosphate(APP)flame retardants to improve the fire safety of epoxy resins(EP).The reason for this is the dual nature of ...In recent years,research has focused heavily on the investigation of functionalized ammonium polyphosphate(APP)flame retardants to improve the fire safety of epoxy resins(EP).The reason for this is the dual nature of APP's performance in fire protection of EP.This article provides a comprehensive overview of the advances in the use of functionalized APP flame retardants to improve the fire resistance of EP materials.It then presents the improvement of the modification of the functionalized APP flame retardants in terms of the hydrophobicity,compatibility and catalytic ability of the flame retardants,as well as the effects on the fire resistance,heat resistance,smoke reduction and mechanical properties of the EP composites.After the summary and comparison of the relevant studies,it is clear that the functionalized APP flame retardants can effectively improve the fire safety of EP composites and offset the adverse effects of APP in EP flame retardant applications.In addition,APP flame retardants can obtain various excellent functions through the use of materials with different properties,and the interaction between APP and materials can also lead to more efficient fire protection.However,the current problem is to find ways to streamline the process and minimise the costs associated with functionalized APP flame retardants,as well as to use them effectively in industrial production.We hope that this review can provide valuable hints and insights for the practical application of functionalized APP in EP and perspectives for future research.展开更多
Caged bicyclic phosphate (CBP) and its dimelamine salt (PDS) were synthesized and added to epoxy resins to obtain the flame retarded epoxy resin composites. The flammability of the composites was characterized by ...Caged bicyclic phosphate (CBP) and its dimelamine salt (PDS) were synthesized and added to epoxy resins to obtain the flame retarded epoxy resin composites. The flammability of the composites was characterized by the limiting oxygen index (LOI) and cone calorimeter tests. The LOI values of flame retarded composites increase consistently with the increase of flame retardant amounts, and they are almost the same when the loading of CBP is the same as that of PDS, although the phosphorus content of PDS is much lower than that of CBP. The total heat release increases in the order of CBP30/ER 〈 PDS30/ER 〈 PDS15/ER 〈 CBPI5/ER, whereas that of specific extinction area is CBP15/ER 〉 CBP30/ER 〉 PDS30/ER ≌ PDS15/ER. PDS exhibits more effective inhibition of oxidation of combustible gases. In the tests of thermogravimetric analyses (TG) and Fourier transform infrared spectroscopy (FT-IR), it is found that the degradation of the composites is influenced greatly by the addition of flame retardants. By scanning electron microscopy (SEM), a thick and tight char-layer is observed for PDS30/ER, resulting from the interaction of nitrogen species with phosphorus species. Therefore, the combination of CBP with melamine in the flame retarded system can improve the flame retardancy greatly.展开更多
To enhance the thermal stability and flame retardancy of epoxy resin(EP),beta-cyclodextrin(β-CD)is successfully introduced into the layered tin phenylphosphonate(SnPP),which is incorporated into EP matrix for prepari...To enhance the thermal stability and flame retardancy of epoxy resin(EP),beta-cyclodextrin(β-CD)is successfully introduced into the layered tin phenylphosphonate(SnPP),which is incorporated into EP matrix for preparing EP/β-CD@SnPP composites.The results indicate that the addition ofβ-CD@SnPP obviously improve the thermal stability and residual yield of EP composites at higher temperature.When the amount ofβ-CD@SnPP is only 4 wt%,EP/4β-CD@SnPP composites pass V-1 rating,and LOI value is up to 30.8%.Meanwhile,β-CD@SnPP effectively suppress the heat release and reduce the smoke production of EP/β-CD@SnPP composites in combustion,and the peak heat release rate(PHRR),total heat release(THR),smoke production rate(SPR)of EP/6β-CD@SnPP composites reduce by 28.4%,33.0%and 44.8%by comparison with those of pure EP.The good flame retardancy and smoke suppression are ascribed to the synergistic effect of excellent carbon-forming capability and fire retardancy ofβ-CD@SnPP.展开更多
通过溶液合成法制备了一种共价有机框架(COF),再将COF包覆在焦磷酸哌嗪(PAPP)上形成PAPP@COF杂化阻燃剂,并将其应用于EP中。通过氧指数测定仪、垂直燃烧测定仪和锥形量热仪分析了PAPP@COF杂化阻燃剂对EP的阻燃及消烟性能的影响。结果表...通过溶液合成法制备了一种共价有机框架(COF),再将COF包覆在焦磷酸哌嗪(PAPP)上形成PAPP@COF杂化阻燃剂,并将其应用于EP中。通过氧指数测定仪、垂直燃烧测定仪和锥形量热仪分析了PAPP@COF杂化阻燃剂对EP的阻燃及消烟性能的影响。结果表明,加入2%(质量分数,下同)的PAPP@COF时,EP复合材料的氧指数达到了30.0%,热释放速率峰值为911.35 k W/m^(2),烟释放速率峰值为0.394 m^(2)/s,相比于纯EP分别降低了37.36%和34.27%。PAPP@COF杂化阻燃剂对EP有优异的阻燃和消烟作用,为COF类阻燃剂的研究提供了一定的基础。展开更多
基金financially supported by the National Natural Science Foundation of China (22178242)。
文摘A flame retardant containing multiple antiflaming elements usually exhibits high-efficient flame retardancy. Here, a novel P/N/Si-containing ammonium polyphosphate derivative(APTES-APP) is synthesized from ammonium polyphosphate(APP) and silane coupling agent(3-aminopropyl)triethoxysilane(APTES)via cation exchange, which is quite different in the chemical structure from APTES-modified APP for retaining silicon hydroxyls. APTES-APP is highly efficient for the epoxy resin. 8%(mass) APTES-APP imparts excellent flame retardancy to the epoxy resin, with a V-0 rating at the UL-94 test(1.6 mm)and an LOI value of 26%(vol). The peak heat release rate and total smoke production of the flameretardant epoxy resin are decreased by 68.1% and 31.3%, respectively. The synergy of P/N/Si contributes to the well-expanded char residue with a strong and dense surface layer, which is a very good barrier against heat and mass transfer. Besides, there is no significant deterioration in the mechanical properties of flame-retardant epoxy resin thanks to silicon hydroxyls forming hydrogen bonds with epoxy molecules. Meanwhile, other molecules can be grafted onto APTES-APP via these silicon hydroxyls, if needed.Briefly, this work has developed a new strategy for amino silane as flame retardants. In conjunction with a low-cost and simple preparation method, APTES-APP has a promising prospect in the high-performance flame-retardant epoxy.
基金Funded by the Defense Preresearch Project of the Eleventh-Five-Year-Plan of China (No. 51312040404)
文摘Flame-retardant mechanism of magnesium oxychloride (M OC) in EP was in-vestigated by limiting oxygen index (LOI), XRD, SEM, TG-DTG and DSC. The results show that MOC performed well as an inorganic flame-retardant in EP. When the content of MOC is 50%, the LOI of EP reaches 29.6% and mass of residual char reaches 9.6%. The flame retarde mechanism of MOC is due to the synergies of diluting, cooling, catalyzing char forming and obstructing effects.
基金the National Natural Science Foundation of China(Grant Nos.22075265,51991352)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant Nos.2021459).
文摘Although epoxy resin has been widely used in various fields,it still suffers from some problems including brittleness and flammability.In this study,a new phosphonic acid,N,N-bis(phosphomethyl)glycine(GDMP),was prepared by Mannich reaction with bio-based glycine and then a novel layered zirconium phosphonate(ZrGDMP)was synthesized using GDMP and zirconyl chloride hydrate as reactants.The chemical structure of ZrGDMP was well characterized by 1 H and 31P NMR,SEM,XRD and XPS.The effect of ZrGDMP on the flame retardancy,smoke suppression,strengthening and toughening performances of the epoxy matrix was investigated and evaluated.TGA results indicated that compared with pure EP,ZrGDMP-EP composites showed higher char yield due to the catalytic charring effect of ZrGDMP.The pure EP exhibited high flammability,while ZrGDMP-EP composites possessed excellent thermal stability and remarkable fire resistance.The PHRR,THR,and TSP values of 3wt%ZrGDMP-EP were obviously declined by 39.6%,40.2%,and 24.9%compared to these of pure EP.Moreover,the tensile and impact tests implied that the addition of ZrGDMP can significantly reinforce the toughness as well as the strength of EP in terms of higher impact strength(24.8 kJ/m^(2))and tensile strength(57.7 MPa),which was mainly contributed to the uniform dispersion of ZrGDMP within the EP matrix.
基金Supported by the National Natural Science Foundation of China(51273023)China Postdoctoral Science Foundation(2014M550023)
文摘An aliphatic epoxy monomer"polypropyleneglycol-diglycidylether(PPGDGE,YF878)"is loaded in the epoxy resins(EP)to evaluate the influence of epoxy structure on the blowing-out effect,which is caused by 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide(DOPO)and octaphenyl silsesquioxane(OPS).The flame retarding properties of these EP composites were tested using the LOI and UL-94 procedures.The pyrolytic gases produced and the thermal stability of the EP composites with different flame retardants were detected by TGA-FTIR in air.The negative effect of YF878 was detected from the TTI,HRR,and p-HRR results after the cone calorimeter test.The char produced by the EP composites after the cone calorimeter test was investigated by FTIR.It is proposed that the aliphatic chain of the YF878 is easy to break down and produce combustible gases,so it does not easily form a crosslinked structure in the condensed phase.These results are very helpful for investigation of the conditions under which the blowing-out effect in epoxy resins can be caused by synergy of phosphorous and silicon.
基金Funded by the Defense Preresearch Project of the Eleventh-Five-Year-Plan of China(No.51312040404)
文摘Flame retardant epoxy resins were prepared by a simple mixed method using ammonium aluminum carbonate hydroxy hydrate (AACHH) as a halogen-free flame retardant. The prepared samples were characterized by X-ray diffraction, thermogravimetric and differential scanning calorimetry, scanning electron microscope and limiting oxygen index(LOI) experiments. Effects of AACHH content on LOI of epoxy resins/AACHH composite and flame retardant mechanism were investigated and discussed. Results show that AACHH exhibites excellent flame-retardant properties in epoxy resin(EP). When the content of AACHH was 47.4%, the LOI of EP reached 32.2%. Moreover, the initial and terminal decomposition temperature of EP increased by 48 ℃ and 40 ℃, respectively. The flame retarded mechanism of AACHH is due to the synergic flame retardant effects of diluting, cooling, decomposition resisting and obstructing.
文摘A novel,versatile flame retardant substructure based on phosphorylated salicylic acid(SCP)is described and used in the synthesis of new flame retardants for HexFlowRTM6,a high-performance epoxy resin used in resin transfer molding processes as composite matrix.The starting material salicylic acid can be obtained from natural sources.SCP as reactive phosphorus chloride is converted with a novolak,a novolak containing 9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide(DOPO)substituents or DOPO-hydroquinone to flame retardants with sufficient thermal stability and high char yield.Additionally,these flame retardants are soluble in the resin as well as react into the epoxy network.The determined thermal stability and glass transition temperatures of flame retarded neat resin samples as well as the interlaminar shear strength of corresponding carbon fiber reinforced composite materials showed the applicability of these flame retardants.Neat resin samples and composites were tested for their flammability by UL94 and/or flame-retardant performance by cone calorimetry.All tested flame retardants decrease the peak of heat release rate by up to 54%for neat resin samples.A combination of DOPO and SCP in one flame retardant shows synergistic effects in char formation and the mode of action adapts to neat resin or fiber-reinforced samples,so there is efficient flame retardancy in both cases.Therefore,a tailoring of SCP based flame retardants is possible.Additionally,these flame retardants efficiently reduce fiber degradation during combustion of carbon fiber-reinforced epoxy resins as observed by scanning electron microscopy and energy dispersive X-ray spectroscopy.
基金the financial supports from Fundamental Research Funds for the Central Universities(2020CDJQY-A006)the National Natural Science Foundation of China(No.51603025)The Opening Fund of State Key Laboratory of Fire Science(HZ2019-KF11).
文摘In this work,a bio-based flame retardant(Cy-HEDP)was synthesized from cytosine and HEDP through a facile salt-forming reaction and embedded into epoxy matrix to improve the flame retardancy and smoke suppression performance.The product Cy-HEDP was well characterized by FTIR,^(1)H and^(31)P NMR and SEM tests.On the basis of the results,by adding 15 wt%Cy-HEDP,the EP15 can pass UL-94 V-0 rating,and the total smoke production(TSP)as well as total heat release(THR)can be decreased by 61.05%(from 22.61 to 8.7 m^(2)/m^(2))and 39.44%(from 103.19 to 62.50 MJ/m^(2))in comparison to the unfilled EP,reflecting the attenuated smoke toxicity and impeded heat generation.According to the analysis results of residual char,it can be concluded that Cy-HEDP possessed the ability to promote the formation of continuous and dense char layers,which would be a physical barrier to insulate oxygen and prevent heat feedback during the combustion of EP.This work provide inspiration towards developing bio-based flame retardant,probably extending the prospects to other polymeric material system.
文摘The effects of a magnesium-based layered composite on the flammability of a phenolic epoxy resin(EP)are studied.In order to produce the required composite material,first,magnesium hydroxide,aluminum salt and deionized water are mixed into a reactor according to a certain proportion to induce a hydrothermal reaction;then,the feed liquid is filtered out using a solid-liquid separation procedure;finally,the material is dried and crushed.In order to evaluate its effects on the flammability of the EP,first,m-phenylenediamine is added to EP and vacuum defoamation is performed;then,EP is poured into a polytetrafluoroethylene mold,cooled to room temperature and demoulded;finally,the magnesium-based layered composite is added to EP,and its flame retardance is characterized by thermogravimetric analysis,limiting oxygen index and cone calorimetry.The X-ray diffraction patterns show that the baseline of magnesium-based layered composite is stable and the front shape is sharp and symmetrical when the molar ratio of magnesium to aluminium is 3.2:1;with the addition of magnesium-based layered composite,the initial pyrolysis temperature of EP of 10%,15%and 30%magnesium-based layered composite decreases to 318.2°C,317.9°C and 357.1°C,respectively.After the reaction,the amount of residual carbon increases to 0.1%,3.45%and 8.3%,and the limiting oxygen index increases by 28.3%,29.1%and 29.6%,respectively.The maximum heat release rate of cone calorimeter decreases gradually.The optimum molar ratio of Mg:Al for green synthesis is 3.2:1,and the NO_(3)-intercalated magnesium-based layered composite has the best flame retardance properties.
文摘The most common process to manufacture advanced composites is the costly autoclave.One of the out-of-autoclave alternatives is the low-cost vacuum assisted resin infusion(VARI)which produces quality parts with less pollution.Epoxy resin is a widely used composite matrix resin,but its high flammability limits its use as interior composite parts for vehicles.The usual flame retardant for epoxy involves halogen,which is effective but has high smoke toxicity.As a result,halogen-free flame retardant epoxy resin systems become dominant.In this paper,phosphorus flame retardant was combined with benzoxazine(BOZ)to produce synergistic effect and achieve satisfactory flame retardance,as well as mechanical improvement for the epoxy resin.Differential scanning calorimetry(DSC),dynamic mechanical analysis(DMA),thermal gravitational analysis(TGA),the cone calorimeter(CC),and limiting oxygen index(LOI)were used to characterize the resins.The results showed significant improvement on the flame retardance of the synergistically modified resins.Specifically,the carbon residue increased by 113.6%,and the char thickness increased by 6 to 7 times,compared to those of the flammable benchmark resin.The LOI reached 33 and passed the UL94 V-0 vertical burn rating.The modified resins also exhibited adequate stability and viscosity suitable for VARI processes.
基金This work is supported by the National Natural Science Foundation of China(NSFC)under the agreements of 21875131 and 21773150The Natural Science Basic Research Plan in Shaanxi Province of China(2020JM-283)the Fundamental Research Funds for the Central Universities(GK202003044 and GK201902014)are also acknowledged for partial support。
文摘Quest for bio-based halogen-free green flame retardant has attracted many concerns in recent years.Herein a reactive functional flame retardant containing phosphorus VDP is synthesized from vanillin,9,10-dihydro-9-oxa-10-phosphophene-10-oxide(DOPO)and phenol via a facile way.VDP is characterized with^(1)H NMR,^(31)P NMR,FTIR and Time of Flight Mass Spectrometry,and used as a new reactive flame retardant for bisphenol epoxy thermosets.Thermogravimetry analysis shows that when the VDP loading is only 0.5P%(based on phosphorus content),the residue increases from 14.2%to 21.1%at 750℃ in N_(2)compare with neat DGEBA.Correspondingly,the limit oxygen index increased to 29.6%,and flame retardancy reaches UL-94 V0 grade.Micro combustion calorimetry(MCC)and cone calorimetry analyses demonstrate that VDP can significantly lower flammability of the epoxy thermoset.With only 0.5P%of VDP,the heat release rate,total heat release rate and smoke production are reduced markedly.At the same time,the mechanical properties of the modified epoxy thermosets are also improved.The impact strength increases by 34%and the flexural strength increased by 23%,with 1.5P%of VDP.In short,VDP not only improves the flame retardancy,but also improves the mechanical properties of the epoxy thermosets.
基金This work was financially supported by the General Program of Civil Aviation Flight University of China(Grant No.J2021-110)National Natural Science Foundation of China(NO:U2033206)+1 种基金The funding of Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province(NO:MZ2022JB01)the project of Key Laboratory of Civil Aviation Emergency Science&Technology,CAAC(Grant No.NJ2022022,Grant No.NJ2023025).
文摘In recent years,research has focused heavily on the investigation of functionalized ammonium polyphosphate(APP)flame retardants to improve the fire safety of epoxy resins(EP).The reason for this is the dual nature of APP's performance in fire protection of EP.This article provides a comprehensive overview of the advances in the use of functionalized APP flame retardants to improve the fire resistance of EP materials.It then presents the improvement of the modification of the functionalized APP flame retardants in terms of the hydrophobicity,compatibility and catalytic ability of the flame retardants,as well as the effects on the fire resistance,heat resistance,smoke reduction and mechanical properties of the EP composites.After the summary and comparison of the relevant studies,it is clear that the functionalized APP flame retardants can effectively improve the fire safety of EP composites and offset the adverse effects of APP in EP flame retardant applications.In addition,APP flame retardants can obtain various excellent functions through the use of materials with different properties,and the interaction between APP and materials can also lead to more efficient fire protection.However,the current problem is to find ways to streamline the process and minimise the costs associated with functionalized APP flame retardants,as well as to use them effectively in industrial production.We hope that this review can provide valuable hints and insights for the practical application of functionalized APP in EP and perspectives for future research.
基金This work was supported by the financial support of the Commission of Science and Technology of Shanghai Municipality(No.05nm05039 and No.05QMX1413).
文摘Caged bicyclic phosphate (CBP) and its dimelamine salt (PDS) were synthesized and added to epoxy resins to obtain the flame retarded epoxy resin composites. The flammability of the composites was characterized by the limiting oxygen index (LOI) and cone calorimeter tests. The LOI values of flame retarded composites increase consistently with the increase of flame retardant amounts, and they are almost the same when the loading of CBP is the same as that of PDS, although the phosphorus content of PDS is much lower than that of CBP. The total heat release increases in the order of CBP30/ER 〈 PDS30/ER 〈 PDS15/ER 〈 CBPI5/ER, whereas that of specific extinction area is CBP15/ER 〉 CBP30/ER 〉 PDS30/ER ≌ PDS15/ER. PDS exhibits more effective inhibition of oxidation of combustible gases. In the tests of thermogravimetric analyses (TG) and Fourier transform infrared spectroscopy (FT-IR), it is found that the degradation of the composites is influenced greatly by the addition of flame retardants. By scanning electron microscopy (SEM), a thick and tight char-layer is observed for PDS30/ER, resulting from the interaction of nitrogen species with phosphorus species. Therefore, the combination of CBP with melamine in the flame retarded system can improve the flame retardancy greatly.
基金This work was supported by Natural Science of Foundation of China(No.21807050)Natural Science Foundation of Jiangsu Province(BK20180975)+1 种基金Key Research and Development Program(Social Development)of Zhenjiang City(SH2019009)Jiangsu University Student Innovation Training Project(2021102991025X).
文摘To enhance the thermal stability and flame retardancy of epoxy resin(EP),beta-cyclodextrin(β-CD)is successfully introduced into the layered tin phenylphosphonate(SnPP),which is incorporated into EP matrix for preparing EP/β-CD@SnPP composites.The results indicate that the addition ofβ-CD@SnPP obviously improve the thermal stability and residual yield of EP composites at higher temperature.When the amount ofβ-CD@SnPP is only 4 wt%,EP/4β-CD@SnPP composites pass V-1 rating,and LOI value is up to 30.8%.Meanwhile,β-CD@SnPP effectively suppress the heat release and reduce the smoke production of EP/β-CD@SnPP composites in combustion,and the peak heat release rate(PHRR),total heat release(THR),smoke production rate(SPR)of EP/6β-CD@SnPP composites reduce by 28.4%,33.0%and 44.8%by comparison with those of pure EP.The good flame retardancy and smoke suppression are ascribed to the synergistic effect of excellent carbon-forming capability and fire retardancy ofβ-CD@SnPP.
文摘通过溶液合成法制备了一种共价有机框架(COF),再将COF包覆在焦磷酸哌嗪(PAPP)上形成PAPP@COF杂化阻燃剂,并将其应用于EP中。通过氧指数测定仪、垂直燃烧测定仪和锥形量热仪分析了PAPP@COF杂化阻燃剂对EP的阻燃及消烟性能的影响。结果表明,加入2%(质量分数,下同)的PAPP@COF时,EP复合材料的氧指数达到了30.0%,热释放速率峰值为911.35 k W/m^(2),烟释放速率峰值为0.394 m^(2)/s,相比于纯EP分别降低了37.36%和34.27%。PAPP@COF杂化阻燃剂对EP有优异的阻燃和消烟作用,为COF类阻燃剂的研究提供了一定的基础。