期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Magnetic and electrical transport study of the intrinsic magnetic topological insulator MnBi_(2)Te_(4)with Ge doping
1
作者 Qingwang Bai Mingxiang Xu 《Frontiers of physics》 SCIE CSCD 2024年第3期51-59,共9页
As an intrinsic magnetic topological insulator with magnetic order and non-trivial topological structure,MnBi_(2)Te_(4)is an ideal material for studying exotic topological states such as quantum anomalous Hall effect ... As an intrinsic magnetic topological insulator with magnetic order and non-trivial topological structure,MnBi_(2)Te_(4)is an ideal material for studying exotic topological states such as quantum anomalous Hall effect and topological axion insulating states.Here,we carry out magnetic and electrical transport measurements on(Mn1–xGex)Bi_(2)Te_(4)(x=0,0.15,0.30,0.45,0.60,and 0.75)single crystals.It is found that with increasing x,the dilution of magnetic moments gradually weakens the antiferromagnetic exchange interaction.Moreover,Ge doping reduces the critical field of ferromagnetic ordering,which may provide a possible way to implement the quantum anomalous Hall effect at lower magnetic field.Electrical transport measurements suggest that electrons are the dominant charge carriers,and the carrier density increases with the Ge doping ratio.Additionally,the Kondo effect is observed in the samples with x=0.45,0.60,and 0.75.Our results suggest that doping germanium is a viable way to tune the magnetic and electrical transport properties of MnBi_(2)Te_(4),opening up the possibility of future applications in magnetic topological insulators. 展开更多
关键词 MnBi_(2)Te_(4) intrinsic magnetic topological insulator transition points Kondo effect
原文传递
Intrinsic magnetic topological materials 被引量:1
2
作者 Yuan Wang Fayuan Zhang +13 位作者 Meng Zeng Hongyi Sun Zhanyang Hao Yongqing Cai Hongtao Rong Chengcheng Zhang Cai Liu Xiaoming Ma Le Wang Shu Guo Junhao Lin Qihang Liu Chang Liu Chaoyu Chen 《Frontiers of physics》 SCIE CSCD 2023年第2期131-160,共30页
Topological states of matter possess bulk electronic structures categorized by topological invariants and edge/surface states due to the bulk-boundary correspondence. Topological materials hold great potential in the ... Topological states of matter possess bulk electronic structures categorized by topological invariants and edge/surface states due to the bulk-boundary correspondence. Topological materials hold great potential in the development of dissipationless spintronics, information storage and quantum computation, particularly if combined with magnetic order intrinsically or extrinsically. Here, we review the recent progress in the exploration of intrinsic magnetic topological materials, including but not limited to magnetic topological insulators, magnetic topological metals, and magnetic Weyl semimetals. We pay special attention to their characteristic band features such as the gap of topological surface state, gapped Dirac cone induced by magnetization (either bulk or surface), Weyl nodal point/line and Fermi arc, as well as the exotic transport responses resulting from such band features. We conclude with a brief envision for experimental explorations of new physics or effects by incorporating other orders in intrinsic magnetic topological materials. 展开更多
关键词 intrinsic magnetic topological insulator magnetic topological metals magnetic Weyl semimetal topological surface states magnetic gap
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部