期刊文献+
共找到267篇文章
< 1 2 14 >
每页显示 20 50 100
Hilbert spectrum and intrinsic oscillation mode of dynamic response of a bilinear SDOF system: influence of harmonic excitation amplitude 被引量:1
1
作者 张郁山 梁建文 胡聿贤 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2005年第1期17-26,共10页
Under harmonic wave excitation, the dynamic response of a bilinear SDOF system can be expressed by the Hilbert spectrum. The Hilbert spectrum can be formulated by (1) the inter-wave combination mechanism between the s... Under harmonic wave excitation, the dynamic response of a bilinear SDOF system can be expressed by the Hilbert spectrum. The Hilbert spectrum can be formulated by (1) the inter-wave combination mechanism between the steady response and the transient response when the system behaves linearly, or (2) the intra-wave modulation mechanism embedded in one intrinsic mode function (IMF) component when the system behaves nonlinearly. The temporal variation of the instantaneous frequency of the IMF component is consistent with the system nonlinear behavior of yielding and unloading. As a thorough study of this fundamental structural dynamics problem, this article investigates the influence of the amplitude of the harmonic wave excitation on the Hilbert spectrum and the intrinsic oscillatory mode of the dynamic response of a bilinear SDOF system. 展开更多
关键词 bilinear SDOF system Hilbert-Huang transform (HHT) Hilbert spectrum Hilbert marginal spectrum Fourier spectrum intrinsic mode function (IMF) intra-wave modulation inter-wave combination
下载PDF
基于EEMD分解的阶次跟踪方法研究
2
作者 魏仕华 蔺梦雄 《机电工程》 CAS 北大核心 2024年第9期1604-1612,共9页
摆线针轮减速器组成零部件繁多、构成复杂,工作时噪声干扰大且多在变转速、往复的复杂工况下工作,因此,难以准确提取其内部的故障特征。针对这一问题,提出了一种基于集合经验模态分解(EEMD)与阶次跟踪分析的方法,对摆线针轮减速器进行... 摆线针轮减速器组成零部件繁多、构成复杂,工作时噪声干扰大且多在变转速、往复的复杂工况下工作,因此,难以准确提取其内部的故障特征。针对这一问题,提出了一种基于集合经验模态分解(EEMD)与阶次跟踪分析的方法,对摆线针轮减速器进行了故障诊断。首先,对采集到的时域振动信号和转速信号进行了等角度域差值采样,得到了振动信号的等角域平稳信号;然后,对等角域信号进行了集合经验模态分解,得到了若干个固有模态分量(IMFs),计算了各个固有模态分量的峭度值,选取目标模态分量进行了信号重构;接着,采用快速傅里叶变换得到了故障信号的阶次图;最后,根据减速器的传动方式、各零部件的模数,计算出了各主要部件的故障阶次,对比减速器在故障前后阶次图的能量峰值进行了故障诊断。研究结果表明:该方法能够准确提取包含故障信息的固有模态分量,实现从等时域信号到等角域信号的转换,并提取摆线针轮减速器的滚针故障阶次(8.37阶),故障准确率达到99.6%,可实现摆线针轮减速器在非平稳工况下的故障特征识别,并验证该方法的可行性和有效性。 展开更多
关键词 摆线针轮减速器 集合经验模态分解 阶次跟踪分析 故障诊断 变转速工况 固有模态分量
下载PDF
基于多域信息融合与深度分离卷积的轴承故障诊断网络模型 被引量:3
3
作者 王同 许昕 潘宏侠 《机电工程》 北大核心 2024年第1期22-32,共11页
针对传统卷积神经网络(CNN)对滚动轴承振动信号的故障识别准确率不高这一问题,提出了一种基于多域信息融合结合深度分离卷积(MDIDSC)的轴承故障诊断方法。首先,利用自适应噪声的完全集合经验模态分解(CEEMDAN)算法对轴承振动信号进行了... 针对传统卷积神经网络(CNN)对滚动轴承振动信号的故障识别准确率不高这一问题,提出了一种基于多域信息融合结合深度分离卷积(MDIDSC)的轴承故障诊断方法。首先,利用自适应噪声的完全集合经验模态分解(CEEMDAN)算法对轴承振动信号进行了分解;然后,利用分解出的本征模态函数(IMF)的各个分量构建了多空间状态矩阵,并将该多空间状态矩阵输入该深度分离卷积模型中,进行了卷积训练;同时,在该深度分离卷积模型中添加了残差结构,对数据特征进行了复利用,并对卷积核进行了深度分离,解决了深度模型的网络退化问题;最后,提出了一种空间特征提取方法,对模型参数进行了修剪,采用一种自适应学习率退火方法进行了梯度优化,以避免模型陷入局部最优。研究结果表明:通过对多个轴承故障数据集进行对比分析可知,MDIDSC在轴承故障诊断方面的准确率和稳定性明显优于其他方法,MDIDSC的最高测试准确率为100%,平均测试准确率为99.07%;同时,在测试集中的最大损失和平均损失分别为0.1345和0.0841;该结果表明MDIDSC在轴承故障诊断方面具有一定的优越性。 展开更多
关键词 深度分离卷积 信息融合 参数修剪 残差网络 卷积神经网络 自适应噪声的完全集合经验模态分解 本征模态函数 多域信息融合结合深度分离卷积
下载PDF
基于多尺度散布熵的磁声发射信号特征识别方法
4
作者 李梦俊 沈功田 +1 位作者 沈永娜 王强 《机电工程》 北大核心 2024年第1期158-165,共8页
在工程中对设备进行应力检测和微损伤检测时,采集磁声发射信号易受噪声干扰,同时其特征的提取也存在困难,为此,将变分模态分解与散布熵相结合,提出了一种基于自适应多尺度散布熵的磁声发射(MAE)信号特征识别方法。首先,设计搭建了检测... 在工程中对设备进行应力检测和微损伤检测时,采集磁声发射信号易受噪声干扰,同时其特征的提取也存在困难,为此,将变分模态分解与散布熵相结合,提出了一种基于自适应多尺度散布熵的磁声发射(MAE)信号特征识别方法。首先,设计搭建了检测实验平台,采集了Q345钢静载拉伸实验中0 MPa~400 MPa应力状态下的MAE信号;然后,采用变分模态分解方法,对磁声发射信号进行了自适应分解,生成了一系列从低频到高频分布的本征模态函数(IMF)分量;其次,计算了每个本征模态函数分量的散布熵值,构建了MAE信号的特征向量矩阵;最后,将特征向量矩阵输入到基于支持向量机建立的识别分类模型中,进行了信号的训练和识别。研究结果表明:使用基于自适应多尺度散布熵的磁声发射(MAE)信号特征识别方法,能够自适应地实现MAE信号的多尺度化目的,并且准确地识别出不同应力状态下的信号特征,分类识别准确率高达95.3704%,验证了该方法的有效性;说明基于自适应多尺度散布熵和多分类支持向量机的信号特征识别方法能够快速且有效地识别不同应力状态,在信号特征识别方面具有较好的应用潜力。 展开更多
关键词 磁声发射 变分模态分解 散布熵 Q345钢 信号特征识别 本征模态函数
下载PDF
基于EMD分量与小波包能量熵的轧辊磨削颤振在线预测
5
作者 朱欢欢 迟玉伦 +2 位作者 张梦梦 熊力 应晓昂 《金刚石与磨料磨具工程》 CAS 北大核心 2024年第1期73-84,共12页
针对轧辊磨削颤振时的时频域单一处理方法存在部分特征丢失的问题,提出了时频域相结合的方法对信号进行特征处理,并利用智能算法实现轧辊磨削颤振的在线预测。首先,利用经验模态分解(empirical mode decomposition,EMD)方法对振动传感... 针对轧辊磨削颤振时的时频域单一处理方法存在部分特征丢失的问题,提出了时频域相结合的方法对信号进行特征处理,并利用智能算法实现轧辊磨削颤振的在线预测。首先,利用经验模态分解(empirical mode decomposition,EMD)方法对振动传感器信号进行分解获得各固有模态函数(intrinsic mode function,IMF),剔除“虚假分量”后计算表征轧辊磨削颤振的时域特征。然后,利用小波包能量熵对声发射传感器信号求解频率段节点能量熵值,获得表征轧辊磨削颤振的频域特征。最后,将上述时频域特征降维后代入智能算法模型实现对轧辊磨削加工的在线预测。结果表明:LV-SVM模型的磨削颤振分类平均准确率达92.75%,模型平均响应时间为0.7765 s;验证了时频域特性的EMD和小波包能量熵方法的LV-SVM在线预测轧辊磨削颤振的有效性。 展开更多
关键词 轧辊磨削颤振 EMD分解 固有模态函数 小波包能量熵 最小二乘支持向量机
下载PDF
基于参数自适应VMD的滚动轴承故障特征提取
6
作者 库鹏博 朱怡琳 张守京 《轻工机械》 CAS 2024年第5期74-81,90,共9页
针对提取的滚动轴承故障特征信号易受复杂工作环境的影响以及变分模态分解(variational mode decomposition,VMD)参数依赖人为经验选择的问题,课题组提出了一种基于参数自适应的VMD的滚动轴承故障特征提取方法。首先,以原始信号经过VMD... 针对提取的滚动轴承故障特征信号易受复杂工作环境的影响以及变分模态分解(variational mode decomposition,VMD)参数依赖人为经验选择的问题,课题组提出了一种基于参数自适应的VMD的滚动轴承故障特征提取方法。首先,以原始信号经过VMD后的固有模态函数(intrinsic mode function,IMF)的包络谱熵作为适应度函数,采用猎豹优化(cheetah optimizer,CO)算法对分解阶数k、惩罚因子α进行自适应寻优;其次,基于峭度准则对各IMF分量进行重构;然后,对重构信号进行Hilbert包络谱分析从而提取故障特征,并通过滚动轴承故障仿真信号和实验信号经VMD和SSA-VMD处理结果对比验证可行性。研究结果表明:该方法相比于经典VMD所得故障特征更为准确;在参数寻优时间方面CO算法相比麻雀搜索算法(sparrow search algorithm,SSA)提升了65%。课题组的研究具有一定工程应用价值。 展开更多
关键词 滚动轴承 特征提取 变分模态分解 固有模态函数 猎豹优化算法
下载PDF
CEEMDAN与改进形态差值滤波结合的滚动轴承故障诊断
7
作者 王子豪 王硕 +1 位作者 关博凯 鲍晓华 《微特电机》 2024年第1期20-25,30,共7页
受电机所处工作环境中诸多因素的影响,轴承故障振动数据通常会混杂大量噪声,使得故障特征被无效噪声信息所淹没。为了将轴承故障冲击特征信息从含噪信号中提取出来,提出了一种CEEMDAN与改进形态差值滤波结合的故障诊断方法。在诊断初始... 受电机所处工作环境中诸多因素的影响,轴承故障振动数据通常会混杂大量噪声,使得故障特征被无效噪声信息所淹没。为了将轴承故障冲击特征信息从含噪信号中提取出来,提出了一种CEEMDAN与改进形态差值滤波结合的故障诊断方法。在诊断初始阶段利用CEEMDAN对故障信号加以处理,得到相应的固有模态函数(IMF);用归一化互信息及峭度值作为评判标准,筛选所需的IMFs分量信号,并以此为基础完成信号重构;利用改进形态差值滤波实现对重构信号的去噪处理;求取处理后的信号频谱并加以探究,提取故障特征信息,完成对故障的有效诊断。由实例验证结果可知,该方法可在背景噪声干扰下对故障特征频率进行较好的定位,能够作为滚动轴承故障诊断的有效方法。 展开更多
关键词 轴承故障诊断 经验模态分解 故障特征提取 改进形态滤波 本征模函数
下载PDF
基于DIGWO-VMD-CMPE的轴承故障识别方法
8
作者 辛昊 鲁玉军 朱轩逸 《机电工程》 CAS 北大核心 2024年第2期205-215,共11页
针对滚动轴承故障信号特征提取困难和识别准确率低的问题,提出了一种基于维度学习的改进灰狼优化算法(DIGWO)优化变分模态分解(VMD)和复合多尺度排列熵(CMPE)的轴承故障识别方法。首先,采用基于维度学习的狩猎(DLH)搜索策略、余弦收敛因... 针对滚动轴承故障信号特征提取困难和识别准确率低的问题,提出了一种基于维度学习的改进灰狼优化算法(DIGWO)优化变分模态分解(VMD)和复合多尺度排列熵(CMPE)的轴承故障识别方法。首先,采用基于维度学习的狩猎(DLH)搜索策略、余弦收敛因子a和个体狼ω位置更新的方法将灰狼优化算法(GWO)改进为DIGWO,并利用DIGWO算法的自适应性优化VMD分解,得到了多个本征模态函数(IMFs);然后,利用复合多尺度排列熵计算IMFs的特征值,选取适当维数的特征,构建了故障特征向量;最后,利用DIGWO算法优化支持向量机(SVM)的惩罚系数C和径向基函数g,建立了DIGWO-SVM滚动轴承故障诊断分类器,并利用滚动轴承的振动数据验证了算法的有效性。研究结果表明:基于CMPE的DIGWO-SVM滚动轴承故障诊断方法能够有效地识别轴承的运行状况,识别准确率达到了99.42%,相较于PSO-SVM、SSA-SVM方法提高了7.75%、1.68%,证明了该方法的分类性能在滚动轴承故障诊断中更具优势。 展开更多
关键词 基于维度学习的改进灰狼优化算法 变分模态分解 复合多尺度排列熵 支持向量机 本征模态函数 基于维度学习的狩猎
下载PDF
GIS不同耦合方式下注入脉冲的加权IMF局放信号等效性
9
作者 董冰冰 李康 +3 位作者 高常胜 刘贯科 戴喜良 夏云峰 《电力工程技术》 北大核心 2024年第4期95-103,共9页
注入脉冲模拟局放是气体绝缘金属封闭组合电器(gas insulated switchgear,GIS)特高频(ultra high frequency,UHF)局放监测装置功能校验的主要方法,由于现场校验脉冲注入的耦合方式不同,模拟局放与实际局放等效性规律尚不明确,无法保证... 注入脉冲模拟局放是气体绝缘金属封闭组合电器(gas insulated switchgear,GIS)特高频(ultra high frequency,UHF)局放监测装置功能校验的主要方法,由于现场校验脉冲注入的耦合方式不同,模拟局放与实际局放等效性规律尚不明确,无法保证监测装置功能校验的有效性。文中首先建立126 kV GIS典型局放缺陷(尖端、悬浮、绝缘子气泡)和内/外置式脉冲注入UHF局放检测平台,并对UHF信号有效脉冲进行归一化提取;接着提出基于经验模态分解的加权本征模函数(intrinsic mode functions,IMF)信号处理方法,通过计算局放信号欧式距离平均值和最大值表征其等效性;最后与常规信号偏差法进行对比验证。研究表明,相较于常规信号等效性分析方法,加权IMF法可有效解决UHF信号波形局部差异较大的问题;使用内置传感器脉冲注入的模拟局放信号与悬浮局放信号等效性最高,局放信号的欧式距离平均值M_(e)和最大值M_(a)分别为3.82%和10.28%。因此,UHF监测装置功能校验可采用恒定参数注入脉冲代替悬浮缺陷,且模拟局放可优先选择内置UHF传感器注入脉冲。文中研究可为UHF局放监测装置功能校验的脉冲注入方法提供参考。 展开更多
关键词 注入脉冲 局放模拟 经验模态分解 信号等效性分析 本征模函数(IMF) 欧式距离
下载PDF
AOA-CEEMDAN和融合特征在齿轮箱故障诊断中的应用
10
作者 马卫东 刘子全 +1 位作者 姚楠 朱雪琼 《机电工程》 CAS 北大核心 2024年第5期817-826,共10页
自适应噪声完备集成经验模态分解(CEEMDAN)的参数由于是人为设置的,从而会导致其信号的分解不彻底。针对这一问题,提出了一种基于算术优化算法(AOA)优化CEEMDAN、融合特征和随机森林(RF)的齿轮箱故障诊断方法。首先,采用AOA算法对CEEMDA... 自适应噪声完备集成经验模态分解(CEEMDAN)的参数由于是人为设置的,从而会导致其信号的分解不彻底。针对这一问题,提出了一种基于算术优化算法(AOA)优化CEEMDAN、融合特征和随机森林(RF)的齿轮箱故障诊断方法。首先,采用AOA算法对CEEMDAN方法的关键参数进行自适应选取,并采用优化后的CEEMDAN方法对齿轮箱振动信号进行了分解,生成若干个本征模态函数(IMF);随后,利用相关系数准则选择了前4阶IMF分量作为故障敏感分量;接着,利用由注意熵和散度熵组成的融合特征提取方法挖掘了故障敏感分量的故障特征,得到了故障敏感特征样本;最后,将表征齿轮箱故障特性的故障特征输入至RF多故障分类器中,建立了故障分类模型,完成了齿轮箱的故障识别;利用QPZZ-Ⅱ型齿轮箱数据集进行了实验,并将其结果与采用其他方法所得结果进行了对比。研究结果表明:相较于原始CEEMDAN,优化后的CEEMDAN能够更加准确地分解非线性齿轮箱振动信号,故障识别准确率提高了4%;相较于单一的故障特征,融合特征能够更加准确地表征齿轮箱的故障状态,故障识别准确率分别提高了3.2%和8%。基于AOA-CEEMDAN和融合特征提取以及RF分类器的故障诊断方法为齿轮箱的故障特征提取和故障诊断提供一种可行的思路和方案。 展开更多
关键词 齿轮箱 本征模态函数 算术优化算法 自适应噪声完备集成经验模态分解 随机森林
下载PDF
使用快速傅里叶变换优化周期参数的EMD-FFT-SARIMA光伏发电预测模型
11
作者 熊川羽 廖晓红 +5 位作者 何诗英 陈然 王巍 臧楠 王瀛 肖梦涵 《强激光与粒子束》 CAS CSCD 北大核心 2024年第8期117-123,共7页
根据分布式能源工业园区的光伏电力单元特点,对园区光伏发电功率预测模型进行优化,为后续的调度策略提供数据支持。针对经验模式分解(EMD)与季节性差分自回归移动平均模型(SARIMA)相组合的EMD-SARIMA预测模型中,原始数据经过EMD分解得... 根据分布式能源工业园区的光伏电力单元特点,对园区光伏发电功率预测模型进行优化,为后续的调度策略提供数据支持。针对经验模式分解(EMD)与季节性差分自回归移动平均模型(SARIMA)相组合的EMD-SARIMA预测模型中,原始数据经过EMD分解得到的各固有本征模态函数(IMF)分量周期计算问题,提出加入快速傅里叶变换(FFT)的周期计算方法,建立EMD-FFT-SARIMA光伏发电功率预测模型。再将每个IMF对应的预测结果进行叠加重构得到最终的预测结果。通过预测结果的误差计算可以发现,加入FFT环节后均方根误差(RMSE)从120.6 MW下降到19.3 MW,平均绝对误差(MAE)从52.87 MW下降到12.3 MW。 展开更多
关键词 经验模式分解 季节性差分自回归移动平均模型 周期计算 固有本征模态函数信号分量 快速傅里叶变换 光伏发电预测
下载PDF
机舱式激光雷达测风仪传动齿轮机械故障诊断研究
12
作者 马骁 韦存海 +2 位作者 李跃朋 赵亮 焦波 《机械与电子》 2024年第8期76-80,共5页
提出了机舱式激光雷达测风仪传动齿轮机械故障诊断方法。利用最小熵反褶积(MED)对齿轮的振动信号去噪处理,利用集成经验模态分解(EEMD)得到齿轮信号的内涵模态(IMF)分量,并根据IMF能量和齿轮峭度建立齿轮故障特征向量,将特征向量输入到... 提出了机舱式激光雷达测风仪传动齿轮机械故障诊断方法。利用最小熵反褶积(MED)对齿轮的振动信号去噪处理,利用集成经验模态分解(EEMD)得到齿轮信号的内涵模态(IMF)分量,并根据IMF能量和齿轮峭度建立齿轮故障特征向量,将特征向量输入到最小二乘支持向量机(least squares support vector machine,LSSVM)中,完成传动齿轮机械故障的诊断。实验结果表明,该方法的齿轮故障诊断时间短,根据迭代次数的增加,误差率可控制在3%以下。 展开更多
关键词 齿轮故障诊断 最小熵反褶积 本征模式分量能量 峭度 最小二乘支持向量机
下载PDF
Modal identification of multi-degree-of-freedom structures based on intrinsic chirp component decomposition method 被引量:1
13
作者 Sha WEI Shiqian CHEN +2 位作者 Zhike PENG Xingjian DONG Wenming ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第12期1741-1758,共18页
Modal parameter identification is a mature technology.However,there are some challenges in its practical applications such as the identification of vibration systems involving closely spaced modes and intensive noise ... Modal parameter identification is a mature technology.However,there are some challenges in its practical applications such as the identification of vibration systems involving closely spaced modes and intensive noise contamination.This paper proposes a new time-frequency method based on intrinsic chirp component decomposition(ICCD)to address these issues.In this method,a redundant Fourier model is used to ameliorate border distortions and improve the accuracy of signal reconstruction.The effectiveness and accuracy of the proposed method are illustrated using three examples:a cantilever beam structure with intensive noise contamination or environmental interference,a four-degree-of-freedom structure with two closely spaced modes,and an impact test on a cantilever rectangular plate.By comparison with the identification method based on the empirical wavelet transform(EWT),it is shown that the presented method is effective,even in a high-noise environment,and the dynamic characteristics of closely spaced modes are accurately determined. 展开更多
关键词 modal identification closely spaced mode TIME-FREQUENCY domain intrinsic CHIRP COMPONENT decomposition(ICCD) multi-degree-of-freedom(MDOF) system
下载PDF
Signal prediction based on empirical mode decomposition and artificial neural networks 被引量:1
14
作者 Wang Yong Liu Yanping Yang Jing 《Geodesy and Geodynamics》 2012年第1期52-56,共5页
In view of the usefulness of Empirical Mode Decomposition (EMD), Artificial Neural Networks ( ANN), and Most Relevant Matching Extension (MRME) methods in dealing with nonlinear signals, we pro- pose a new way o... In view of the usefulness of Empirical Mode Decomposition (EMD), Artificial Neural Networks ( ANN), and Most Relevant Matching Extension (MRME) methods in dealing with nonlinear signals, we pro- pose a new way of combining these methods to deal with signal prediction. We found the results of combining EMD with either ANN or MRME to have higher prediction precision for a time series than the result of using EMD alone. 展开更多
关键词 EMD (Empirical mode Decomposition) ANN (Artificial Neural Networks) MRME (Most Relevant Matching Extension) IMF intrinsic mode Function) endpoint problem RBF (Radial Basis Function)
下载PDF
Segmented second algorithm of empirical mode decomposition
15
作者 张敏聪 朱开玉 李从心 《Journal of Shanghai University(English Edition)》 CAS 2008年第5期444-449,共6页
A new algorithm, named segmented second empirical mode decomposition (EMD) algorithm, is proposed in this paper in order to reduce the computing time of EMD and make EMD algorithm available to online time-frequency ... A new algorithm, named segmented second empirical mode decomposition (EMD) algorithm, is proposed in this paper in order to reduce the computing time of EMD and make EMD algorithm available to online time-frequency analysis. The original data is divided into some segments with the same length. Each segment data is processed based on the principle of the first-level EMD decomposition. The algorithm is compared with the traditional EMD and results show that it is more useful and effective for analyzing nonlinear and non-stationary signals. 展开更多
关键词 segmented second empirical mode decomposition (EMD) algorithm time-frequency analysis intrinsic mode functions (IMF) first-level decomposition
下载PDF
基于改进的MEEMD的隧道掘进爆破振动信号去噪优化分析 被引量:6
16
作者 周红敏 赵事成 +3 位作者 赵文清 王双 郝广伟 张宪堂 《振动与冲击》 EI CSCD 北大核心 2023年第10期74-81,共8页
爆破振动信号受现场条件限制,多为复杂含噪信号,对降噪方法的性能提出更高要求。为了获得真实振动特征,建立了一种基于改进的总体平均经验模态分解(modified ensemble empirical mode decomposition,MEEMD)的联合去噪方法。首先,将原始... 爆破振动信号受现场条件限制,多为复杂含噪信号,对降噪方法的性能提出更高要求。为了获得真实振动特征,建立了一种基于改进的总体平均经验模态分解(modified ensemble empirical mode decomposition,MEEMD)的联合去噪方法。首先,将原始信号进行MEEMD分解得到本征模态分量(intrinsic mode function,IMF),结合相关系数和样本熵(sample entropy,SE)-Hurst指数进行IMF分类;然后,针对含噪IMF分量中的残留噪声,使用最小均方(least mean square,LMS)自适应滤波进行降噪,达到信号去噪的目的。算法对比结果表明:在仿真试验中,MEEMD-LMS相较互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)、快速集合经验模态分解(fast ensemble empirical mode decomposition,FEEMD)等方法表现出更优的降噪性能;在隧道掘进爆破的实例分析中,MEEMD-LMS相较MEEMD对高频噪声的降噪效果更好,低频段频谱更清晰,具备良好的适用性。 展开更多
关键词 隧道掘进 爆破振动 改进的总体平均经验模态分解(MEEMD) 最小均方(LMS)滤波 本征模态分量(IMF)评价
下载PDF
Weighing axle weight of moving vehicle based on empirical mode decomposition
17
作者 周志峰 蔡萍 《Journal of Shanghai University(English Edition)》 CAS 2008年第1期76-79,共4页
Dynanfic forces are the main factor that influences the axle weight measurement accuracy of moving vehicle. Empirical mode decomposition (EMD) is presented to separate the dynamic forces contained in the axle weight... Dynanfic forces are the main factor that influences the axle weight measurement accuracy of moving vehicle. Empirical mode decomposition (EMD) is presented to separate the dynamic forces contained in the axle weight signal. The concept and algorithm of EMD are introduced. The characteristic of the axle weight signal is analyzed. The method of judging pseudo intrinsic mode function (pseudo-IMF) is presented to improve the weighing accuracy. Numerical simulation and field experiments are conducted to evaluate the performance of EMD. The result shows effectiveness of the proposed method. Maximum weighing errors of the front axle, the rear axle and the gross weight at the speed of 15 km/h or lower are 2.22%, 6.26% and 4.11% respectively. 展开更多
关键词 WEIGH-IN-MOTION empirical mode decomposition (EMD) pseudo intrinsic mode function (pseudo-IMF)
下载PDF
VMD和SO优化SVM的光纤复合海缆故障诊断研究
18
作者 李俊卿 刘若尧 +2 位作者 何玉灵 张承志 耿继亚 《电子测量技术》 北大核心 2023年第22期8-16,共9页
为了进一步提高光纤复合海底电缆的故障诊断准确率,提出了基于VMD及SO优化SVM的故障诊断方法。首先,使用VMD对故障数据进行分解,得到若干条IMF分量并利用皮尔逊相关系数做进一步筛选。其次,对筛选得到的IMF分量进行特征提取,分别提取各... 为了进一步提高光纤复合海底电缆的故障诊断准确率,提出了基于VMD及SO优化SVM的故障诊断方法。首先,使用VMD对故障数据进行分解,得到若干条IMF分量并利用皮尔逊相关系数做进一步筛选。其次,对筛选得到的IMF分量进行特征提取,分别提取各分量的峭度、近似熵及模糊熵。最后,将上述特征值构成的特征向量输入经SO优化的SVM中进行训练及分类,得到故障诊断结果。实验结果表明,采用本文提出的基于VMD和SO优化SVM的故障识别方法,光纤复合海底电缆的故障识别准确率达到了100%,分别比SVM、GA-SVM、GWO-SVM、CNN方法的识别准确度高7.5%、5%、5%、7.5%。 展开更多
关键词 变分模态分解 蛇优化算法 支持向量机 IMF分量 光纤复合海缆故障
下载PDF
基于并行卷积神经网络和特征融合的小样本轴承故障诊断方法
19
作者 王俊年 王源 童鹏程 《机电工程》 CAS 北大核心 2023年第3期317-325,369,共10页
在风力发电机轴承故障诊断过程中,基于深度学习的故障诊断方法受限于有限的标注样本,存在模型收敛困难和识别准确率较低等问题,为此,提出了一种基于并行卷积神经网络(P-CNN)和特征融合的小样本风机轴承故障诊断方法。首先,采用集合经验... 在风力发电机轴承故障诊断过程中,基于深度学习的故障诊断方法受限于有限的标注样本,存在模型收敛困难和识别准确率较低等问题,为此,提出了一种基于并行卷积神经网络(P-CNN)和特征融合的小样本风机轴承故障诊断方法。首先,采用集合经验模态分解(EEMD)方法,将轴承的原始振动信号分解为若干个本征模态函数(IMF)分量以及残余分量;然后,分别对其进行了短时傅里叶变换(STFT),将其转换为时频特征图,同时构建了多个相同的卷积神经网络分支,以此作为特征提取器;最后,在融合层中,将提取到的时频域特征进行了通道特征融合,作为最终分类器的输入数据,对风机轴承进行了故障识别;并采用美国凯斯西储大学不同大小的轴承数据集,对该方法的适用性和有效性进行了验证。研究结果表明:在仅含有160个样本时,基于并行卷积神经网络(P-CNN)和特征融合的诊断方法的平均准确率高达94.5%;与支持向量机(SVM)、故障网络(FaultNet)、第一层宽卷积核深度卷积神经网络(WDCNN)相比,该诊断方法具有更高的准确率和更强的鲁棒性。 展开更多
关键词 深度学习 集合经验模态分解 短时傅里叶变换 并行卷积神经网络 特征提取 本征模态函数 故障诊断准确率和鲁棒性
下载PDF
基于交叉小波变换与改进变分模态分解的联合去噪方法 被引量:2
20
作者 王鹏博 刘自然 +1 位作者 刘玉明 吕振礼 《机电工程》 CAS 北大核心 2023年第2期292-298,共7页
轴承早期的故障信号容易被噪声所淹没,导致其故障特征难以被提取,为此,提出了一种基于交叉小波变换(XWT)与改进变分模态分解(IVMD)联合去噪的信号处理方法。首先,对双通道的原始信号进行了XWT处理,得到了小波相干谱,通过包络谱曲线确定... 轴承早期的故障信号容易被噪声所淹没,导致其故障特征难以被提取,为此,提出了一种基于交叉小波变换(XWT)与改进变分模态分解(IVMD)联合去噪的信号处理方法。首先,对双通道的原始信号进行了XWT处理,得到了小波相干谱,通过包络谱曲线确定了最佳模态数K;将传统VMD优化为IVMD,利用IVMD将两个通道中峭度值较大的信号分解成为多个固有模态分量(IMFs),再对每个IMF与峭度值较大的信号进行XWT处理;然后,将得到的小波相干谱图与双通道原始信号的小波相干谱图进行了比较,从原始信号中去除了识别出的噪声分量,实现了降噪和故障特征增强的目的;最后,利用K邻近(KNN)算法进行了滚动轴承故障分类,其故障识别率达到了97.51%,与IVMD、VMD-XWT方法相比,该方法故障识别率分别提高了10.83%、4.62%。研究结果表明:该方法可以明显降低噪声干扰,能更好地提取轴承早期的故障信息。 展开更多
关键词 滚动轴承故障诊断 故障特征提取 降噪 故障特征增强 交叉小波变换 改进变分模态分解 K邻近算法 固有模态分量
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部