The stress-controlled fatigue tests are carried out at a stress ratio of 0.1 and a frequency of 10 Hz,and span both low-cycle and high-cycle regimes by varying the applied stress amplitudes.The high-cycle fa-tigue reg...The stress-controlled fatigue tests are carried out at a stress ratio of 0.1 and a frequency of 10 Hz,and span both low-cycle and high-cycle regimes by varying the applied stress amplitudes.The high-cycle fa-tigue regime gives a fatigue strength of 497 MPa and a fatigue ratio of 0.44.At equivalent conditions,the alloy’s fatigue strength is greater than all other high-entropy alloys(HEAs)with reported high-cycle fatigue data,dilute body-centered cubic alloys,and many structural alloys such as steels,titanium al-loys,and aluminum alloys.Through in-depth analyses of crack-propagation trajectories,fracture-surface morphologies and deformation plasticity by means of various microstructural analysis techniques and theoretical frameworks,the alloy’s remarkable fatigue resistance is attributed to delayed crack initiation in the high-cycle regime,which is achieved by retarding the formation of localized persistent slip bands,and its good resistance to crack propagation in the low-cycle regime,which is accomplished by intrin-sic toughening backed up by extrinsic toughening.Moreover,the stochastic nature of the fatigue data is neatly captured with a 2-parameter Weibull model.展开更多
基金the support of the Department of Energy (DOE) Office of Fossil Energy, National Energy Technology Laboratory (NETL) (DE-FE-0011194)the National Science Foundation (DMR1611180 and 1809640)+3 种基金the U.S. Army Office Projects (W911NF-13-1-0438 and W911NF-19-2-0049) with Drs. J. Mullen, V. Cedro, R. Dunst, S. Markovich, J. Yang, G. Shiflet, D. Farkas, M. P. Bakas, D. M. Stepp, and S. Mathaudhu as program managersthe financial support from the National Natural Science Foundation of China (No. 52001271)the Shandong Major Scientific and Technological Innovation Program, China(No. 2019JZZY010325)the financial support of the Center for Materials Processing (CMP), at The University of Tennessee, with the director of Dr. Claudia J. Rawn. J.W.
文摘The stress-controlled fatigue tests are carried out at a stress ratio of 0.1 and a frequency of 10 Hz,and span both low-cycle and high-cycle regimes by varying the applied stress amplitudes.The high-cycle fa-tigue regime gives a fatigue strength of 497 MPa and a fatigue ratio of 0.44.At equivalent conditions,the alloy’s fatigue strength is greater than all other high-entropy alloys(HEAs)with reported high-cycle fatigue data,dilute body-centered cubic alloys,and many structural alloys such as steels,titanium al-loys,and aluminum alloys.Through in-depth analyses of crack-propagation trajectories,fracture-surface morphologies and deformation plasticity by means of various microstructural analysis techniques and theoretical frameworks,the alloy’s remarkable fatigue resistance is attributed to delayed crack initiation in the high-cycle regime,which is achieved by retarding the formation of localized persistent slip bands,and its good resistance to crack propagation in the low-cycle regime,which is accomplished by intrin-sic toughening backed up by extrinsic toughening.Moreover,the stochastic nature of the fatigue data is neatly captured with a 2-parameter Weibull model.