A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a...A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model.展开更多
The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during the...The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during these situations.Also,the security issues in the Internet of Medical Things(IoMT)used in these service,make the situation even more critical because cyberattacks on the medical devices might cause treatment delays or clinical failures.Hence,services in the healthcare ecosystem need rapid,uninterrupted,and secure facilities.The solution provided in this research addresses security concerns and services availability for patients with critical health in remote areas.This research aims to develop an intelligent Software Defined Networks(SDNs)enabled secure framework for IoT healthcare ecosystem.We propose a hybrid of machine learning and deep learning techniques(DNN+SVM)to identify network intrusions in the sensor-based healthcare data.In addition,this system can efficiently monitor connected devices and suspicious behaviours.Finally,we evaluate the performance of our proposed framework using various performance metrics based on the healthcare application scenarios.the experimental results show that the proposed approach effectively detects and mitigates attacks in the SDN-enabled IoT networks and performs better that other state-of-art-approaches.展开更多
Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,hi...Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,highly-adaptable Network Intrusion Detection Systems(NIDS)that can identify anomalies.The NSL-KDD dataset is used in the study;it is a sizable collection comprising 43 variables with the label’s“attack”and“level.”It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks(CNN).Furthermore,this dataset makes it easier to conduct a thorough assessment of the suggested intrusion detection strategy.Furthermore,maintaining operating efficiency while improving detection accuracy is the primary goal of this work.Moreover,typical NIDS examines both risky and typical behavior using a variety of techniques.On the NSL-KDD dataset,our CNN-based approach achieves an astounding 99.728%accuracy rate when paired with channel attention.Compared to previous approaches such as ensemble learning,CNN,RBM(Boltzmann machine),ANN,hybrid auto-encoders with CNN,MCNN,and ANN,and adaptive algorithms,our solution significantly improves intrusion detection performance.Moreover,the results highlight the effectiveness of our suggested method in improving intrusion detection precision,signifying a noteworthy advancement in this field.Subsequent efforts will focus on strengthening and expanding our approach in order to counteract growing cyberthreats and adjust to changing network circumstances.展开更多
The Internet of Things(IoT)links various devices to digital services and significantly improves the quality of our lives.However,as IoT connectivity is growing rapidly,so do the risks of network vulnerabilities and th...The Internet of Things(IoT)links various devices to digital services and significantly improves the quality of our lives.However,as IoT connectivity is growing rapidly,so do the risks of network vulnerabilities and threats.Many interesting Intrusion Detection Systems(IDSs)are presented based on machine learning(ML)techniques to overcome this problem.Given the resource limitations of fog computing environments,a lightweight IDS is essential.This paper introduces a hybrid deep learning(DL)method that combines convolutional neural networks(CNN)and long short-term memory(LSTM)to build an energy-aware,anomaly-based IDS.We test this system on a recent dataset,focusing on reducing overhead while maintaining high accuracy and a low false alarm rate.We compare CICIoT2023,KDD-99 and NSL-KDD datasets to evaluate the performance of the proposed IDS model based on key metrics,including latency,energy consumption,false alarm rate and detection rate metrics.Our findings show an accuracy rate over 92%and a false alarm rate below 0.38%.These results demonstrate that our system provides strong security without excessive resource use.The practicality of deploying IDS with limited resources is demonstrated by the successful implementation of IDS functionality on a Raspberry Pi acting as a Fog node.The proposed lightweight model,with a maximum power consumption of 6.12 W,demonstrates its potential to operate effectively on energy-limited devices such as low-power fog nodes or edge devices.We prioritize energy efficiency whilemaintaining high accuracy,distinguishing our scheme fromexisting approaches.Extensive experiments demonstrate a significant reduction in false positives,ensuring accurate identification of genuine security threats while minimizing unnecessary alerts.展开更多
This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intr...This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intrusion detection performance,given the vital relevance of safeguarding computer networks against harmful activity.The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset,a popular benchmark for IDS research.The model performs well in both the training and validation stages,with 91.30%training accuracy and 94.38%validation accuracy.Thus,the model shows good learning and generalization capabilities with minor losses of 0.22 in training and 0.1553 in validation.Furthermore,for both macro and micro averages across class 0(normal)and class 1(anomalous)data,the study evaluates the model using a variety of assessment measures,such as accuracy scores,precision,recall,and F1 scores.The macro-average recall is 0.9422,the macro-average precision is 0.9482,and the accuracy scores are 0.942.Furthermore,macro-averaged F1 scores of 0.9245 for class 1 and 0.9434 for class 0 demonstrate the model’s ability to precisely identify anomalies precisely.The research also highlights how real-time threat monitoring and enhanced resistance against new online attacks may be achieved byDNN-based intrusion detection systems,which can significantly improve network security.The study underscores the critical function ofDNN-based IDS in contemporary cybersecurity procedures by setting the foundation for further developments in this field.Upcoming research aims to enhance intrusion detection systems by examining cooperative learning techniques and integrating up-to-date threat knowledge.展开更多
The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems(IDSs).IDSs have become a research hotspot and have seen remarkable performance improvements.Gener...The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems(IDSs).IDSs have become a research hotspot and have seen remarkable performance improvements.Generative adversarial networks(GANs)have also garnered increasing research interest recently due to their remarkable ability to generate data.This paper investigates the application of(GANs)in(IDS)and explores their current use within this research field.We delve into the adoption of GANs within signature-based,anomaly-based,and hybrid IDSs,focusing on their objectives,methodologies,and advantages.Overall,GANs have been widely employed,mainly focused on solving the class imbalance issue by generating realistic attack samples.While GANs have shown significant potential in addressing the class imbalance issue,there are still open opportunities and challenges to be addressed.Little attention has been paid to their applicability in distributed and decentralized domains,such as IoT networks.Efficiency and scalability have been mostly overlooked,and thus,future works must aim at addressing these gaps.展开更多
The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accide...The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accident prevention,cost reduction,and enhanced traffic regularity.Despite these benefits,IoV technology is susceptible to cyber-attacks,which can exploit vulnerabilities in the vehicle network,leading to perturbations,disturbances,non-recognition of traffic signs,accidents,and vehicle immobilization.This paper reviews the state-of-the-art achievements and developments in applying Deep Transfer Learning(DTL)models for Intrusion Detection Systems in the Internet of Vehicles(IDS-IoV)based on anomaly detection.IDS-IoV leverages anomaly detection through machine learning and DTL techniques to mitigate the risks posed by cyber-attacks.These systems can autonomously create specific models based on network data to differentiate between regular traffic and cyber-attacks.Among these techniques,transfer learning models are particularly promising due to their efficacy with tagged data,reduced training time,lower memory usage,and decreased computational complexity.We evaluate DTL models against criteria including the ability to transfer knowledge,detection rate,accurate analysis of complex data,and stability.This review highlights the significant progress made in the field,showcasing how DTL models enhance the performance and reliability of IDS-IoV systems.By examining recent advancements,we provide insights into how DTL can effectively address cyber-attack challenges in IoV environments,ensuring safer and more efficient transportation networks.展开更多
Modern vehicles are equipped with multiple Electronic Control Units(ECUs)that support various convenient driving functions,such as the Advanced Driver Assistance System(ADAS).To enable communication between these ECUs...Modern vehicles are equipped with multiple Electronic Control Units(ECUs)that support various convenient driving functions,such as the Advanced Driver Assistance System(ADAS).To enable communication between these ECUs,the Controller Area Network(CAN)protocol is widely used.However,since CAN lacks any security technologies,it is vulnerable to cyber attacks.To address this,researchers have conducted studies on machine learning-based intrusion detection systems(IDSs)for CAN.However,most existing IDSs still have non-negligible detection errors.In this paper,we pro-pose a new filtering-based intrusion detection system(FIDS)to minimize the detection errors of machine learning-based IDSs.FIDS uses a whitelist and a blacklist created from CAN datasets.The whitelist stores the cryptographic hash value of normal packet sequences to correct false positives(FP),while the blacklist corrects false negatives(FN)based on transmission intervals and identifiers of CAN packets.We evaluated the performance of the proposed FIDS by implementing a machine learning-based IDS and applying FIDS to it.We conducted the evaluation using two CAN attack datasets provided by the Hacking and Countermeasure Research Lab(HCRL),which confirmed that FIDS can effectively reduce the FP and FN of the existing IDS.展开更多
Software-Defined Networking(SDN)enables flexibility in developing security tools that can effectively and efficiently analyze and detect malicious network traffic for detecting intrusions.Recently Machine Learning(ML)...Software-Defined Networking(SDN)enables flexibility in developing security tools that can effectively and efficiently analyze and detect malicious network traffic for detecting intrusions.Recently Machine Learning(ML)techniques have attracted lots of attention from researchers and industry for developing intrusion detection systems(IDSs)considering logically centralized control and global view of the network provided by SDN.Many IDSs have developed using advances in machine learning and deep learning.This study presents a comprehensive review of recent work ofML-based IDS in context to SDN.It presents a comprehensive study of the existing review papers in the field.It is followed by introducing intrusion detection,ML techniques and their types.Specifically,we present a systematic study of recent works,discuss ongoing research challenges for effective implementation of ML-based intrusion detection in SDN,and promising future works in this field.展开更多
With the advancement of network communication technology,network traffic shows explosive growth.Consequently,network attacks occur frequently.Network intrusion detection systems are still the primary means of detectin...With the advancement of network communication technology,network traffic shows explosive growth.Consequently,network attacks occur frequently.Network intrusion detection systems are still the primary means of detecting attacks.However,two challenges continue to stymie the development of a viable network intrusion detection system:imbalanced training data and new undiscovered attacks.Therefore,this study proposes a unique deep learning-based intrusion detection method.We use two independent in-memory autoencoders trained on regular network traffic and attacks to capture the dynamic relationship between traffic features in the presence of unbalanced training data.Then the original data is fed into the triplet network by forming a triplet with the data reconstructed from the two encoders to train.Finally,the distance relationship between the triples determines whether the traffic is an attack.In addition,to improve the accuracy of detecting unknown attacks,this research proposes an improved triplet loss function that is used to pull the distances of the same class closer while pushing the distances belonging to different classes farther in the learned feature space.The proposed approach’s effectiveness,stability,and significance are evaluated against advanced models on the Android Adware and General Malware Dataset(AAGM17),Knowledge Discovery and Data Mining Cup 1999(KDDCUP99),Canadian Institute for Cybersecurity Group’s Intrusion Detection Evaluation Dataset(CICIDS2017),UNSW-NB15,Network Security Lab-Knowledge Discovery and Data Mining(NSL-KDD)datasets.The achieved results confirmed the superiority of the proposed method for the task of network intrusion detection.展开更多
The rapid growth in data generation and increased use of computer network devices has amplified the infrastructures of internet.The interconnectivity of networks has brought various complexities in maintaining network...The rapid growth in data generation and increased use of computer network devices has amplified the infrastructures of internet.The interconnectivity of networks has brought various complexities in maintaining network availability,consistency,and discretion.Machine learning based intrusion detection systems have become essential to monitor network traffic for malicious and illicit activities.An intrusion detection system controls the flow of network traffic with the help of computer systems.Various deep learning algorithms in intrusion detection systems have played a prominent role in identifying and analyzing intrusions in network traffic.For this purpose,when the network traffic encounters known or unknown intrusions in the network,a machine-learning framework is needed to identify and/or verify network intrusion.The Intrusion detection scheme empowered with a fused machine learning technique(IDS-FMLT)is proposed to detect intrusion in a heterogeneous network that consists of different source networks and to protect the network from malicious attacks.The proposed IDS-FMLT system model obtained 95.18%validation accuracy and a 4.82%miss rate in intrusion detection.展开更多
Modern networks are at risk from a variety of threats as a result of the enormous growth in internet-based traffic.By consuming time and resources,intrusive traffic hampers the efficient operation of network infrastru...Modern networks are at risk from a variety of threats as a result of the enormous growth in internet-based traffic.By consuming time and resources,intrusive traffic hampers the efficient operation of network infrastructure.An effective strategy for preventing,detecting,and mitigating intrusion incidents will increase productivity.A crucial element of secure network traffic is Intrusion Detection System(IDS).An IDS system may be host-based or network-based to monitor intrusive network activity.Finding unusual internet traffic has become a severe security risk for intelligent devices.These systems are negatively impacted by several attacks,which are slowing computation.In addition,networked communication anomalies and breaches must be detected using Machine Learning(ML).This paper uses the NSL-KDD data set to propose a novel IDS based on Artificial Neural Networks(ANNs).As a result,the ML model generalizes sufficiently to perform well on untried data.The NSL-KDD dataset shall be utilized for both training and testing.In this paper,we present a custom ANN model architecture using the Keras open-source software package.The specific arrangement of nodes and layers,along with the activation functions,enhances the model’s ability to capture intricate patterns in network data.The performance of the ANN is carefully tested and evaluated,resulting in the identification of a maximum detection accuracy of 97.5%.We thoroughly compared our suggested model to industry-recognized benchmark methods,such as decision classifier combinations and ML classifiers like k-Nearest Neighbors(KNN),Deep Learning(DL),Support Vector Machine(SVM),Long Short-Term Memory(LSTM),Deep Neural Network(DNN),and ANN.It is encouraging to see that our model consistently outperformed each of these tried-and-true techniques in all evaluations.This result underlines the effectiveness of the suggested methodology by demonstrating the ANN’s capacity to accurately assess the effectiveness of the developed strategy in identifying and categorizing instances of network intrusion.展开更多
In recent years, the Internet of Things (IoT) technology has developedby leaps and bounds. However, the large and heterogeneous networkstructure of IoT brings high management costs. In particular, the low costof IoT d...In recent years, the Internet of Things (IoT) technology has developedby leaps and bounds. However, the large and heterogeneous networkstructure of IoT brings high management costs. In particular, the low costof IoT devices exposes them to more serious security concerns. First, aconvolutional neural network intrusion detection system for IoT devices isproposed. After cleaning and preprocessing the NSL-KDD dataset, this paperuses feature engineering methods to select appropriate features. Then, basedon the combination of DCNN and machine learning, this paper designs acloud-based loss function, which adopts a regularization method to preventoverfitting. The model consists of one input layer, two convolutional layers,two pooling layers and three fully connected layers and one output layer.Finally, a framework that can fully consider the user’s privacy protection isproposed. The framework can only exchange model parameters or intermediateresults without exchanging local individuals or sample data. This paperfurther builds a global model based on virtual fusion data, so as to achievea balance between data privacy protection and data sharing computing. Theperformance indicators such as accuracy, precision, recall, F1 score, and AUCof the model are verified by simulation. The results show that the model ishelpful in solving the problem that the IoT intrusion detection system cannotachieve high precision and low cost at the same time.展开更多
Cloud Computing(CC)is the preference of all information technology(IT)organizations as it offers pay-per-use based and flexible services to its users.But the privacy and security become the main hindrances in its achi...Cloud Computing(CC)is the preference of all information technology(IT)organizations as it offers pay-per-use based and flexible services to its users.But the privacy and security become the main hindrances in its achievement due to distributed and open architecture that is prone to intruders.Intrusion Detection System(IDS)refers to one of the commonly utilized system for detecting attacks on cloud.IDS proves to be an effective and promising technique,that identifies malicious activities and known threats by observing traffic data in computers,and warnings are given when such threatswere identified.The current mainstream IDS are assisted with machine learning(ML)but have issues of low detection rates and demanded wide feature engineering.This article devises an Enhanced Coyote Optimization with Deep Learning based Intrusion Detection System for Cloud Security(ECODL-IDSCS)model.The ECODL-IDSCS model initially addresses the class imbalance data problem by the use of Adaptive Synthetic(ADASYN)technique.For detecting and classification of intrusions,long short term memory(LSTM)model is exploited.In addition,ECO algorithm is derived to optimally fine tune the hyperparameters related to the LSTM model to enhance its detection efficiency in the cloud environment.Once the presented ECODL-IDSCS model is tested on benchmark dataset,the experimental results show the promising performance of the ECODL-IDSCS model over the existing IDS models.展开更多
An intrusion detection system(IDS)becomes an important tool for ensuring security in the network.In recent times,machine learning(ML)and deep learning(DL)models can be applied for the identification of intrusions over...An intrusion detection system(IDS)becomes an important tool for ensuring security in the network.In recent times,machine learning(ML)and deep learning(DL)models can be applied for the identification of intrusions over the network effectively.To resolve the security issues,this paper presents a new Binary Butterfly Optimization algorithm based on Feature Selection with DRL technique,called BBOFS-DRL for intrusion detection.The proposed BBOFSDRL model mainly accomplishes the recognition of intrusions in the network.To attain this,the BBOFS-DRL model initially designs the BBOFS algorithm based on the traditional butterfly optimization algorithm(BOA)to elect feature subsets.Besides,DRL model is employed for the proper identification and classification of intrusions that exist in the network.Furthermore,beetle antenna search(BAS)technique is applied to tune the DRL parameters for enhanced intrusion detection efficiency.For ensuring the superior intrusion detection outcomes of the BBOFS-DRL model,a wide-ranging experimental analysis is performed against benchmark dataset.The simulation results reported the supremacy of the BBOFS-DRL model over its recent state of art approaches.展开更多
Typically,smart grid systems enhance the ability of conventional power system networks as it is vulnerable to several kinds of attacks.These vulnerabil-ities might cause the attackers or intruders to collapse the enti...Typically,smart grid systems enhance the ability of conventional power system networks as it is vulnerable to several kinds of attacks.These vulnerabil-ities might cause the attackers or intruders to collapse the entire network system thus breaching the confidentiality and integrity of smart grid systems.Thus,for this purpose,Intrusion detection system(IDS)plays a pivotal part in offering a reliable and secured range of services in the smart grid framework.Several exist-ing approaches are there to detect the intrusions in smart grid framework,however they are utilizing an old dataset to detect anomaly thus resulting in reduced rate of detection accuracy in real-time and huge data sources.So as to overcome these limitations,the proposed technique is presented which employs both real-time raw data from the smart grid network and KDD99 dataset thus detecting anoma-lies in the smart grid network.In the grid side data acquisition,the power trans-mitted to the grid is checked and enhanced in terms of power quality by eradicating distortion in transmission lines.In this approach,power quality in the smart grid network is enhanced by rectifying the fault using a FACT device termed UPQC(Unified Power Quality Controller)and thereby storing the data in cloud storage.The data from smart grid cloud storage and KDD99 are pre-pro-cessed and are optimized using Improved Aquila Swarm Optimization(IASO)to extract optimal features.The probabilistic Recurrent Neural Network(PRNN)classifier is then employed for the prediction and classification of intrusions.At last,the performance is estimated and the outcomes are projected in terms of grid voltage,grid current,Total Harmonic Distortion(THD),voltage sag/swell,accu-racy,precision,recall,F-score,false acceptance rate(FAR),and detection rate of the classifier.The analysis is compared with existing techniques to validate the proposed model efficiency.展开更多
Wireless Sensor Network(WSN),whichfinds as one of the major components of modern electronic and wireless systems.A WSN consists of numerous sensor nodes for the discovery of sensor networks to leverage features like d...Wireless Sensor Network(WSN),whichfinds as one of the major components of modern electronic and wireless systems.A WSN consists of numerous sensor nodes for the discovery of sensor networks to leverage features like data sensing,data processing,and communication.In thefield of medical health care,these network plays a very vital role in transmitting highly sensitive data from different geographic regions and collecting this information by the respective network.But the fear of different attacks on health care data typically increases day by day.In a very short period,these attacks may cause adversarial effects to the WSN nodes.Furthermore,the existing Intrusion Detection System(IDS)suffers from the drawbacks of limited resources,low detection rate,and high computational overhead and also increases the false alarm rates in detecting the different attacks.Given the above-mentioned problems,this paper proposes the novel MegaBAT optimized Long Short Term Memory(MBOLT)-IDS for WSNs for the effective detection of different attacks.In the proposed framework,hyperpara-meters of deep Long Short-Term Memory(LSTM)were optimized by the meta-heuristic megabat algorithm to obtain a low computational overhead and high performance.The experimentations have been carried out using(Wireless Sensor NetworkDetection System)WSN-DS datasets and performance metrics such as accuracy,recall,precision,specificity,and F1-score are calculated and compared with the other existing intelligent IDS.The proposed framework provides outstanding results in detecting the black hole,gray hole,scheduling,flooding attacks and significantly reduces the time complexity,which makes this system suitable for resource-constraint WSNs.展开更多
Rapid increase in the large quantity of industrial data,Industry 4.0/5.0 poses several challenging issues such as heterogeneous data generation,data sensing and collection,real-time data processing,and high request ar...Rapid increase in the large quantity of industrial data,Industry 4.0/5.0 poses several challenging issues such as heterogeneous data generation,data sensing and collection,real-time data processing,and high request arrival rates.The classical intrusion detection system(IDS)is not a practical solution to the Industry 4.0 environment owing to the resource limitations and complexity.To resolve these issues,this paper designs a new Chaotic Cuckoo Search Optimiza-tion Algorithm(CCSOA)with optimal wavelet kernel extreme learning machine(OWKELM)named CCSOA-OWKELM technique for IDS on the Industry 4.0 platform.The CCSOA-OWKELM technique focuses on the design of feature selection with classification approach to achieve minimum computation complex-ity and maximum detection accuracy.The CCSOA-OWKELM technique involves the design of CCSOA based feature selection technique,which incorpo-rates the concepts of chaotic maps with CSOA.Besides,the OWKELM technique is applied for the intrusion detection and classification process.In addition,the OWKELM technique is derived by the hyperparameter tuning of the WKELM technique by the use of sunflower optimization(SFO)algorithm.The utilization of CCSOA for feature subset selection and SFO algorithm based hyperparameter tuning leads to better performance.In order to guarantee the supreme performance of the CCSOA-OWKELM technique,a wide range of experiments take place on two benchmark datasets and the experimental outcomes demonstrate the promis-ing performance of the CCSOA-OWKELM technique over the recent state of art techniques.展开更多
Recently,automotive intrusion detection systems(IDSs)have emerged as promising defense approaches to counter attacks on in-vehicle networks(IVNs).However,the effectiveness of IDSs relies heavily on the quality of the ...Recently,automotive intrusion detection systems(IDSs)have emerged as promising defense approaches to counter attacks on in-vehicle networks(IVNs).However,the effectiveness of IDSs relies heavily on the quality of the datasets used for training and evaluation.Despite the availability of several datasets for automotive IDSs,there has been a lack of comprehensive analysis focusing on assessing these datasets.This paper aims to address the need for dataset assessment in the context of automotive IDSs.It proposes qualitative and quantitative metrics that are independent of specific automotive IDSs,to evaluate the quality of datasets.These metrics take into consideration various aspects such as dataset description,collection environment,and attack complexity.This paper evaluates eight commonly used datasets for automotive IDSs using the proposed metrics.The evaluation reveals biases in the datasets,particularly in terms of limited contexts and lack of diversity.Additionally,it highlights that the attacks in the datasets were mostly injected without considering normal behaviors,which poses challenges for training and evaluating machine learning-based IDSs.This paper emphasizes the importance of addressing the identified limitations in existing datasets to improve the performance and adaptability of automotive IDSs.The proposed metrics can serve as valuable guidelines for researchers and practitioners in selecting and constructing high-quality datasets for automotive security applications.Finally,this paper presents the requirements for high-quality datasets,including the need for representativeness,diversity,and balance.展开更多
To solve the problem of poor detection and limited application range of current intrusion detection methods,this paper attempts to use deep learning neural network technology to study a new type of intrusion detection...To solve the problem of poor detection and limited application range of current intrusion detection methods,this paper attempts to use deep learning neural network technology to study a new type of intrusion detection method.Hence,we proposed an intrusion detection algorithm based on convolutional neural network(CNN)and AdaBoost algorithm.This algorithm uses CNN to extract the characteristics of network traffic data,which is particularly suitable for the analysis of continuous and classified attack data.The AdaBoost algorithm is used to classify network attack data that improved the detection effect of unbalanced data classification.We adopt the UNSW-NB15 dataset to test of this algorithm in the PyCharm environment.The results show that the detection rate of algorithm is99.27%and the false positive rate is lower than 0.98%.Comparative analysis shows that this algorithm has advantages over existing methods in terms of detection rate and false positive rate for small proportion of attack data.展开更多
文摘A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model.
文摘The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during these situations.Also,the security issues in the Internet of Medical Things(IoMT)used in these service,make the situation even more critical because cyberattacks on the medical devices might cause treatment delays or clinical failures.Hence,services in the healthcare ecosystem need rapid,uninterrupted,and secure facilities.The solution provided in this research addresses security concerns and services availability for patients with critical health in remote areas.This research aims to develop an intelligent Software Defined Networks(SDNs)enabled secure framework for IoT healthcare ecosystem.We propose a hybrid of machine learning and deep learning techniques(DNN+SVM)to identify network intrusions in the sensor-based healthcare data.In addition,this system can efficiently monitor connected devices and suspicious behaviours.Finally,we evaluate the performance of our proposed framework using various performance metrics based on the healthcare application scenarios.the experimental results show that the proposed approach effectively detects and mitigates attacks in the SDN-enabled IoT networks and performs better that other state-of-art-approaches.
基金The authors would like to thank Princess Nourah bint Abdulrahman University for funding this project through the Researchers Supporting Project(PNURSP2023R319)this research was funded by the Prince Sultan University,Riyadh,Saudi Arabia.
文摘Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,highly-adaptable Network Intrusion Detection Systems(NIDS)that can identify anomalies.The NSL-KDD dataset is used in the study;it is a sizable collection comprising 43 variables with the label’s“attack”and“level.”It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks(CNN).Furthermore,this dataset makes it easier to conduct a thorough assessment of the suggested intrusion detection strategy.Furthermore,maintaining operating efficiency while improving detection accuracy is the primary goal of this work.Moreover,typical NIDS examines both risky and typical behavior using a variety of techniques.On the NSL-KDD dataset,our CNN-based approach achieves an astounding 99.728%accuracy rate when paired with channel attention.Compared to previous approaches such as ensemble learning,CNN,RBM(Boltzmann machine),ANN,hybrid auto-encoders with CNN,MCNN,and ANN,and adaptive algorithms,our solution significantly improves intrusion detection performance.Moreover,the results highlight the effectiveness of our suggested method in improving intrusion detection precision,signifying a noteworthy advancement in this field.Subsequent efforts will focus on strengthening and expanding our approach in order to counteract growing cyberthreats and adjust to changing network circumstances.
基金supported by the interdisciplinary center of smart mobility and logistics at King Fahd University of Petroleum and Minerals(Grant number INML2400).
文摘The Internet of Things(IoT)links various devices to digital services and significantly improves the quality of our lives.However,as IoT connectivity is growing rapidly,so do the risks of network vulnerabilities and threats.Many interesting Intrusion Detection Systems(IDSs)are presented based on machine learning(ML)techniques to overcome this problem.Given the resource limitations of fog computing environments,a lightweight IDS is essential.This paper introduces a hybrid deep learning(DL)method that combines convolutional neural networks(CNN)and long short-term memory(LSTM)to build an energy-aware,anomaly-based IDS.We test this system on a recent dataset,focusing on reducing overhead while maintaining high accuracy and a low false alarm rate.We compare CICIoT2023,KDD-99 and NSL-KDD datasets to evaluate the performance of the proposed IDS model based on key metrics,including latency,energy consumption,false alarm rate and detection rate metrics.Our findings show an accuracy rate over 92%and a false alarm rate below 0.38%.These results demonstrate that our system provides strong security without excessive resource use.The practicality of deploying IDS with limited resources is demonstrated by the successful implementation of IDS functionality on a Raspberry Pi acting as a Fog node.The proposed lightweight model,with a maximum power consumption of 6.12 W,demonstrates its potential to operate effectively on energy-limited devices such as low-power fog nodes or edge devices.We prioritize energy efficiency whilemaintaining high accuracy,distinguishing our scheme fromexisting approaches.Extensive experiments demonstrate a significant reduction in false positives,ensuring accurate identification of genuine security threats while minimizing unnecessary alerts.
基金Princess Nourah bint Abdulrahman University for funding this project through the Researchers Supporting Project(PNURSP2024R319)funded by the Prince Sultan University,Riyadh,Saudi Arabia.
文摘This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intrusion detection performance,given the vital relevance of safeguarding computer networks against harmful activity.The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset,a popular benchmark for IDS research.The model performs well in both the training and validation stages,with 91.30%training accuracy and 94.38%validation accuracy.Thus,the model shows good learning and generalization capabilities with minor losses of 0.22 in training and 0.1553 in validation.Furthermore,for both macro and micro averages across class 0(normal)and class 1(anomalous)data,the study evaluates the model using a variety of assessment measures,such as accuracy scores,precision,recall,and F1 scores.The macro-average recall is 0.9422,the macro-average precision is 0.9482,and the accuracy scores are 0.942.Furthermore,macro-averaged F1 scores of 0.9245 for class 1 and 0.9434 for class 0 demonstrate the model’s ability to precisely identify anomalies precisely.The research also highlights how real-time threat monitoring and enhanced resistance against new online attacks may be achieved byDNN-based intrusion detection systems,which can significantly improve network security.The study underscores the critical function ofDNN-based IDS in contemporary cybersecurity procedures by setting the foundation for further developments in this field.Upcoming research aims to enhance intrusion detection systems by examining cooperative learning techniques and integrating up-to-date threat knowledge.
文摘The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems(IDSs).IDSs have become a research hotspot and have seen remarkable performance improvements.Generative adversarial networks(GANs)have also garnered increasing research interest recently due to their remarkable ability to generate data.This paper investigates the application of(GANs)in(IDS)and explores their current use within this research field.We delve into the adoption of GANs within signature-based,anomaly-based,and hybrid IDSs,focusing on their objectives,methodologies,and advantages.Overall,GANs have been widely employed,mainly focused on solving the class imbalance issue by generating realistic attack samples.While GANs have shown significant potential in addressing the class imbalance issue,there are still open opportunities and challenges to be addressed.Little attention has been paid to their applicability in distributed and decentralized domains,such as IoT networks.Efficiency and scalability have been mostly overlooked,and thus,future works must aim at addressing these gaps.
基金This paper is financed by the European Union-NextGenerationEU,through the National Recovery and Resilience Plan of the Republic of Bulgaria,Project No.BG-RRP-2.004-0001-C01.
文摘The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accident prevention,cost reduction,and enhanced traffic regularity.Despite these benefits,IoV technology is susceptible to cyber-attacks,which can exploit vulnerabilities in the vehicle network,leading to perturbations,disturbances,non-recognition of traffic signs,accidents,and vehicle immobilization.This paper reviews the state-of-the-art achievements and developments in applying Deep Transfer Learning(DTL)models for Intrusion Detection Systems in the Internet of Vehicles(IDS-IoV)based on anomaly detection.IDS-IoV leverages anomaly detection through machine learning and DTL techniques to mitigate the risks posed by cyber-attacks.These systems can autonomously create specific models based on network data to differentiate between regular traffic and cyber-attacks.Among these techniques,transfer learning models are particularly promising due to their efficacy with tagged data,reduced training time,lower memory usage,and decreased computational complexity.We evaluate DTL models against criteria including the ability to transfer knowledge,detection rate,accurate analysis of complex data,and stability.This review highlights the significant progress made in the field,showcasing how DTL models enhance the performance and reliability of IDS-IoV systems.By examining recent advancements,we provide insights into how DTL can effectively address cyber-attack challenges in IoV environments,ensuring safer and more efficient transportation networks.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.NRF-2021R1A4A1029650).
文摘Modern vehicles are equipped with multiple Electronic Control Units(ECUs)that support various convenient driving functions,such as the Advanced Driver Assistance System(ADAS).To enable communication between these ECUs,the Controller Area Network(CAN)protocol is widely used.However,since CAN lacks any security technologies,it is vulnerable to cyber attacks.To address this,researchers have conducted studies on machine learning-based intrusion detection systems(IDSs)for CAN.However,most existing IDSs still have non-negligible detection errors.In this paper,we pro-pose a new filtering-based intrusion detection system(FIDS)to minimize the detection errors of machine learning-based IDSs.FIDS uses a whitelist and a blacklist created from CAN datasets.The whitelist stores the cryptographic hash value of normal packet sequences to correct false positives(FP),while the blacklist corrects false negatives(FN)based on transmission intervals and identifiers of CAN packets.We evaluated the performance of the proposed FIDS by implementing a machine learning-based IDS and applying FIDS to it.We conducted the evaluation using two CAN attack datasets provided by the Hacking and Countermeasure Research Lab(HCRL),which confirmed that FIDS can effectively reduce the FP and FN of the existing IDS.
基金supported by King Khalid University,Saudi Arabia underGrant No.RGP.2/61/43.
文摘Software-Defined Networking(SDN)enables flexibility in developing security tools that can effectively and efficiently analyze and detect malicious network traffic for detecting intrusions.Recently Machine Learning(ML)techniques have attracted lots of attention from researchers and industry for developing intrusion detection systems(IDSs)considering logically centralized control and global view of the network provided by SDN.Many IDSs have developed using advances in machine learning and deep learning.This study presents a comprehensive review of recent work ofML-based IDS in context to SDN.It presents a comprehensive study of the existing review papers in the field.It is followed by introducing intrusion detection,ML techniques and their types.Specifically,we present a systematic study of recent works,discuss ongoing research challenges for effective implementation of ML-based intrusion detection in SDN,and promising future works in this field.
基金support of National Natural Science Foundation of China(U1936213)Yunnan Provincial Natural Science Foundation,“Robustness analysis method and coupling mechanism of complex coupled network system”(202101AT070167)Yunnan Provincial Major Science and Technology Program,“Construction and application demonstration of intelligent diagnosis and treatment system for childhood diseases based on intelligent medical platform”(202102AA100021).
文摘With the advancement of network communication technology,network traffic shows explosive growth.Consequently,network attacks occur frequently.Network intrusion detection systems are still the primary means of detecting attacks.However,two challenges continue to stymie the development of a viable network intrusion detection system:imbalanced training data and new undiscovered attacks.Therefore,this study proposes a unique deep learning-based intrusion detection method.We use two independent in-memory autoencoders trained on regular network traffic and attacks to capture the dynamic relationship between traffic features in the presence of unbalanced training data.Then the original data is fed into the triplet network by forming a triplet with the data reconstructed from the two encoders to train.Finally,the distance relationship between the triples determines whether the traffic is an attack.In addition,to improve the accuracy of detecting unknown attacks,this research proposes an improved triplet loss function that is used to pull the distances of the same class closer while pushing the distances belonging to different classes farther in the learned feature space.The proposed approach’s effectiveness,stability,and significance are evaluated against advanced models on the Android Adware and General Malware Dataset(AAGM17),Knowledge Discovery and Data Mining Cup 1999(KDDCUP99),Canadian Institute for Cybersecurity Group’s Intrusion Detection Evaluation Dataset(CICIDS2017),UNSW-NB15,Network Security Lab-Knowledge Discovery and Data Mining(NSL-KDD)datasets.The achieved results confirmed the superiority of the proposed method for the task of network intrusion detection.
文摘The rapid growth in data generation and increased use of computer network devices has amplified the infrastructures of internet.The interconnectivity of networks has brought various complexities in maintaining network availability,consistency,and discretion.Machine learning based intrusion detection systems have become essential to monitor network traffic for malicious and illicit activities.An intrusion detection system controls the flow of network traffic with the help of computer systems.Various deep learning algorithms in intrusion detection systems have played a prominent role in identifying and analyzing intrusions in network traffic.For this purpose,when the network traffic encounters known or unknown intrusions in the network,a machine-learning framework is needed to identify and/or verify network intrusion.The Intrusion detection scheme empowered with a fused machine learning technique(IDS-FMLT)is proposed to detect intrusion in a heterogeneous network that consists of different source networks and to protect the network from malicious attacks.The proposed IDS-FMLT system model obtained 95.18%validation accuracy and a 4.82%miss rate in intrusion detection.
基金extend their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research(IFKSURC-1-7109).
文摘Modern networks are at risk from a variety of threats as a result of the enormous growth in internet-based traffic.By consuming time and resources,intrusive traffic hampers the efficient operation of network infrastructure.An effective strategy for preventing,detecting,and mitigating intrusion incidents will increase productivity.A crucial element of secure network traffic is Intrusion Detection System(IDS).An IDS system may be host-based or network-based to monitor intrusive network activity.Finding unusual internet traffic has become a severe security risk for intelligent devices.These systems are negatively impacted by several attacks,which are slowing computation.In addition,networked communication anomalies and breaches must be detected using Machine Learning(ML).This paper uses the NSL-KDD data set to propose a novel IDS based on Artificial Neural Networks(ANNs).As a result,the ML model generalizes sufficiently to perform well on untried data.The NSL-KDD dataset shall be utilized for both training and testing.In this paper,we present a custom ANN model architecture using the Keras open-source software package.The specific arrangement of nodes and layers,along with the activation functions,enhances the model’s ability to capture intricate patterns in network data.The performance of the ANN is carefully tested and evaluated,resulting in the identification of a maximum detection accuracy of 97.5%.We thoroughly compared our suggested model to industry-recognized benchmark methods,such as decision classifier combinations and ML classifiers like k-Nearest Neighbors(KNN),Deep Learning(DL),Support Vector Machine(SVM),Long Short-Term Memory(LSTM),Deep Neural Network(DNN),and ANN.It is encouraging to see that our model consistently outperformed each of these tried-and-true techniques in all evaluations.This result underlines the effectiveness of the suggested methodology by demonstrating the ANN’s capacity to accurately assess the effectiveness of the developed strategy in identifying and categorizing instances of network intrusion.
文摘In recent years, the Internet of Things (IoT) technology has developedby leaps and bounds. However, the large and heterogeneous networkstructure of IoT brings high management costs. In particular, the low costof IoT devices exposes them to more serious security concerns. First, aconvolutional neural network intrusion detection system for IoT devices isproposed. After cleaning and preprocessing the NSL-KDD dataset, this paperuses feature engineering methods to select appropriate features. Then, basedon the combination of DCNN and machine learning, this paper designs acloud-based loss function, which adopts a regularization method to preventoverfitting. The model consists of one input layer, two convolutional layers,two pooling layers and three fully connected layers and one output layer.Finally, a framework that can fully consider the user’s privacy protection isproposed. The framework can only exchange model parameters or intermediateresults without exchanging local individuals or sample data. This paperfurther builds a global model based on virtual fusion data, so as to achievea balance between data privacy protection and data sharing computing. Theperformance indicators such as accuracy, precision, recall, F1 score, and AUCof the model are verified by simulation. The results show that the model ishelpful in solving the problem that the IoT intrusion detection system cannotachieve high precision and low cost at the same time.
基金The Deanship of Scientific Research(DSR)at King Abdulaziz University(KAU),Jeddah,Saudi Arabia has funded this project,under grant no.KEP-1-120-42.
文摘Cloud Computing(CC)is the preference of all information technology(IT)organizations as it offers pay-per-use based and flexible services to its users.But the privacy and security become the main hindrances in its achievement due to distributed and open architecture that is prone to intruders.Intrusion Detection System(IDS)refers to one of the commonly utilized system for detecting attacks on cloud.IDS proves to be an effective and promising technique,that identifies malicious activities and known threats by observing traffic data in computers,and warnings are given when such threatswere identified.The current mainstream IDS are assisted with machine learning(ML)but have issues of low detection rates and demanded wide feature engineering.This article devises an Enhanced Coyote Optimization with Deep Learning based Intrusion Detection System for Cloud Security(ECODL-IDSCS)model.The ECODL-IDSCS model initially addresses the class imbalance data problem by the use of Adaptive Synthetic(ADASYN)technique.For detecting and classification of intrusions,long short term memory(LSTM)model is exploited.In addition,ECO algorithm is derived to optimally fine tune the hyperparameters related to the LSTM model to enhance its detection efficiency in the cloud environment.Once the presented ECODL-IDSCS model is tested on benchmark dataset,the experimental results show the promising performance of the ECODL-IDSCS model over the existing IDS models.
文摘An intrusion detection system(IDS)becomes an important tool for ensuring security in the network.In recent times,machine learning(ML)and deep learning(DL)models can be applied for the identification of intrusions over the network effectively.To resolve the security issues,this paper presents a new Binary Butterfly Optimization algorithm based on Feature Selection with DRL technique,called BBOFS-DRL for intrusion detection.The proposed BBOFSDRL model mainly accomplishes the recognition of intrusions in the network.To attain this,the BBOFS-DRL model initially designs the BBOFS algorithm based on the traditional butterfly optimization algorithm(BOA)to elect feature subsets.Besides,DRL model is employed for the proper identification and classification of intrusions that exist in the network.Furthermore,beetle antenna search(BAS)technique is applied to tune the DRL parameters for enhanced intrusion detection efficiency.For ensuring the superior intrusion detection outcomes of the BBOFS-DRL model,a wide-ranging experimental analysis is performed against benchmark dataset.The simulation results reported the supremacy of the BBOFS-DRL model over its recent state of art approaches.
文摘Typically,smart grid systems enhance the ability of conventional power system networks as it is vulnerable to several kinds of attacks.These vulnerabil-ities might cause the attackers or intruders to collapse the entire network system thus breaching the confidentiality and integrity of smart grid systems.Thus,for this purpose,Intrusion detection system(IDS)plays a pivotal part in offering a reliable and secured range of services in the smart grid framework.Several exist-ing approaches are there to detect the intrusions in smart grid framework,however they are utilizing an old dataset to detect anomaly thus resulting in reduced rate of detection accuracy in real-time and huge data sources.So as to overcome these limitations,the proposed technique is presented which employs both real-time raw data from the smart grid network and KDD99 dataset thus detecting anoma-lies in the smart grid network.In the grid side data acquisition,the power trans-mitted to the grid is checked and enhanced in terms of power quality by eradicating distortion in transmission lines.In this approach,power quality in the smart grid network is enhanced by rectifying the fault using a FACT device termed UPQC(Unified Power Quality Controller)and thereby storing the data in cloud storage.The data from smart grid cloud storage and KDD99 are pre-pro-cessed and are optimized using Improved Aquila Swarm Optimization(IASO)to extract optimal features.The probabilistic Recurrent Neural Network(PRNN)classifier is then employed for the prediction and classification of intrusions.At last,the performance is estimated and the outcomes are projected in terms of grid voltage,grid current,Total Harmonic Distortion(THD),voltage sag/swell,accu-racy,precision,recall,F-score,false acceptance rate(FAR),and detection rate of the classifier.The analysis is compared with existing techniques to validate the proposed model efficiency.
文摘Wireless Sensor Network(WSN),whichfinds as one of the major components of modern electronic and wireless systems.A WSN consists of numerous sensor nodes for the discovery of sensor networks to leverage features like data sensing,data processing,and communication.In thefield of medical health care,these network plays a very vital role in transmitting highly sensitive data from different geographic regions and collecting this information by the respective network.But the fear of different attacks on health care data typically increases day by day.In a very short period,these attacks may cause adversarial effects to the WSN nodes.Furthermore,the existing Intrusion Detection System(IDS)suffers from the drawbacks of limited resources,low detection rate,and high computational overhead and also increases the false alarm rates in detecting the different attacks.Given the above-mentioned problems,this paper proposes the novel MegaBAT optimized Long Short Term Memory(MBOLT)-IDS for WSNs for the effective detection of different attacks.In the proposed framework,hyperpara-meters of deep Long Short-Term Memory(LSTM)were optimized by the meta-heuristic megabat algorithm to obtain a low computational overhead and high performance.The experimentations have been carried out using(Wireless Sensor NetworkDetection System)WSN-DS datasets and performance metrics such as accuracy,recall,precision,specificity,and F1-score are calculated and compared with the other existing intelligent IDS.The proposed framework provides outstanding results in detecting the black hole,gray hole,scheduling,flooding attacks and significantly reduces the time complexity,which makes this system suitable for resource-constraint WSNs.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP1/338/40)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R237)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Rapid increase in the large quantity of industrial data,Industry 4.0/5.0 poses several challenging issues such as heterogeneous data generation,data sensing and collection,real-time data processing,and high request arrival rates.The classical intrusion detection system(IDS)is not a practical solution to the Industry 4.0 environment owing to the resource limitations and complexity.To resolve these issues,this paper designs a new Chaotic Cuckoo Search Optimiza-tion Algorithm(CCSOA)with optimal wavelet kernel extreme learning machine(OWKELM)named CCSOA-OWKELM technique for IDS on the Industry 4.0 platform.The CCSOA-OWKELM technique focuses on the design of feature selection with classification approach to achieve minimum computation complex-ity and maximum detection accuracy.The CCSOA-OWKELM technique involves the design of CCSOA based feature selection technique,which incorpo-rates the concepts of chaotic maps with CSOA.Besides,the OWKELM technique is applied for the intrusion detection and classification process.In addition,the OWKELM technique is derived by the hyperparameter tuning of the WKELM technique by the use of sunflower optimization(SFO)algorithm.The utilization of CCSOA for feature subset selection and SFO algorithm based hyperparameter tuning leads to better performance.In order to guarantee the supreme performance of the CCSOA-OWKELM technique,a wide range of experiments take place on two benchmark datasets and the experimental outcomes demonstrate the promis-ing performance of the CCSOA-OWKELM technique over the recent state of art techniques.
基金supported in part by the 2021 Autonomous Driving Development Innovation Project of the Ministry of Science and ICT,‘Development of Technology for Security and Ultra-High-Speed Integrity of the Next-Generation Internal Net-Work of Autonomous Vehicles’(No.2021-0-01348)and in part by the National Research Foundation of Korea(NRF)grant funded by the Korean Government Ministry of Science and ICT(MSIT)under Grant NRF-2021R1A2C2014428.
文摘Recently,automotive intrusion detection systems(IDSs)have emerged as promising defense approaches to counter attacks on in-vehicle networks(IVNs).However,the effectiveness of IDSs relies heavily on the quality of the datasets used for training and evaluation.Despite the availability of several datasets for automotive IDSs,there has been a lack of comprehensive analysis focusing on assessing these datasets.This paper aims to address the need for dataset assessment in the context of automotive IDSs.It proposes qualitative and quantitative metrics that are independent of specific automotive IDSs,to evaluate the quality of datasets.These metrics take into consideration various aspects such as dataset description,collection environment,and attack complexity.This paper evaluates eight commonly used datasets for automotive IDSs using the proposed metrics.The evaluation reveals biases in the datasets,particularly in terms of limited contexts and lack of diversity.Additionally,it highlights that the attacks in the datasets were mostly injected without considering normal behaviors,which poses challenges for training and evaluating machine learning-based IDSs.This paper emphasizes the importance of addressing the identified limitations in existing datasets to improve the performance and adaptability of automotive IDSs.The proposed metrics can serve as valuable guidelines for researchers and practitioners in selecting and constructing high-quality datasets for automotive security applications.Finally,this paper presents the requirements for high-quality datasets,including the need for representativeness,diversity,and balance.
基金supported in part by the National Key R&D Program of China(No.2022YFB3904503)National Natural Science Foundation of China(No.62172418)。
文摘To solve the problem of poor detection and limited application range of current intrusion detection methods,this paper attempts to use deep learning neural network technology to study a new type of intrusion detection method.Hence,we proposed an intrusion detection algorithm based on convolutional neural network(CNN)and AdaBoost algorithm.This algorithm uses CNN to extract the characteristics of network traffic data,which is particularly suitable for the analysis of continuous and classified attack data.The AdaBoost algorithm is used to classify network attack data that improved the detection effect of unbalanced data classification.We adopt the UNSW-NB15 dataset to test of this algorithm in the PyCharm environment.The results show that the detection rate of algorithm is99.27%and the false positive rate is lower than 0.98%.Comparative analysis shows that this algorithm has advantages over existing methods in terms of detection rate and false positive rate for small proportion of attack data.