Mobile ad-hoc networks(MANET)are garnering a lot of attention because of their potential to provide low-cost solutions to real-world communica-tions.MANETs are more vulnerable to security threats.Changes in nodes,band...Mobile ad-hoc networks(MANET)are garnering a lot of attention because of their potential to provide low-cost solutions to real-world communica-tions.MANETs are more vulnerable to security threats.Changes in nodes,band-width limits,and centralized control and management are some of the characteristics.IDS(Intrusion Detection System)are the aid for detection,deter-mination,and identification of illegal system activity such as use,copying,mod-ification,and destruction of data.To address the identified issues,academics have begun to concentrate on building IDS-based machine learning algorithms.Deep learning is a type of machine learning that can produce exceptional outcomes.This study proposes that WOA-DNN be used to detect and classify incursions in MANET(Whale Optimized Deep Neural Network Model)WOA(Whale Opti-mization Algorithm)and DNN(Deep Neural Network)are used to optimize the preprocessed data to construct a system for classifying and predicting unantici-pated cyber-attacks that are both effective and efficient.As a result,secure data transport to other nodes is provided,preventing intruder attacks.The invaders are found using the(Machine Learning)ML-IDS and WOA-DNN methods.The data is reduced in dimensionality using Principal Component Analysis(PCA),which improves the accuracy of the outputs.A classifier is used in forward propagation to predict whether a result is normal or malicious.To compare the traditional and proposed models’effectiveness,the accuracy of classification,detection of the attack rate,precision rate,and F-Measure,Recall are utilized.The proposed WOA-DNN model has higher assessment metrics and a 99.1%accuracy rate.WOA-DNN also has a greater assault detection rate than others,resulting in fewer false alarms.The classification accuracy of the proposed WOA-DNN model is 99.1%.展开更多
In this paper, we conduct research on the network intrusion detection system based on the modified particle swarm optimization algorithm. Computer interconnection ability put forward the higher requirements for the sy...In this paper, we conduct research on the network intrusion detection system based on the modified particle swarm optimization algorithm. Computer interconnection ability put forward the higher requirements for the system reliability design, the need to ensure that the system can support various communication protocols to guarantee the reliability and security of the network. At the same time also require network system, the server or products have strong ability of fault tolerance and redundancy, better meet the needs of users, to ensure the safety of the information data and the good operation of the network system. For this target, we propose the novel paradigm for the enhancement of the modern computer network that is innovative.展开更多
In this paper, we conduct research on the novel computer network intrusion detection model based on improved particle swarmoptimization algorithm. TCP fl ood attack, UDP fl ood attack, ICMP fl ood attack, deformity of...In this paper, we conduct research on the novel computer network intrusion detection model based on improved particle swarmoptimization algorithm. TCP fl ood attack, UDP fl ood attack, ICMP fl ood attack, deformity of message attack, the application layer attack is themost typical DDOS attacks, DDOS attacks are also changing to upgrade at the same time, scholars research on DDOS attack defense measuresbecome more and more has the application value and basic practical signifi cance. Network security protection is a comprehensive project, nomatter what measures to take that safety is always relative, so as the network security administrator, should change with the network securitysituation and the security requirements, moderate to adjust security policies, so as to achieve the target. Under this basis, we propose the newperspective on the IDS system that will then enhance the robustness and safetiness of the overall network system.展开更多
Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualiz...Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualization deployment,the cloud environment is exposed to a wide variety of cyber-attacks and security difficulties.The Intrusion Detection System(IDS)is a specialized security tool that network professionals use for the safety and security of the networks against attacks launched from various sources.DDoS attacks are becoming more frequent and powerful,and their attack pathways are continually changing,which requiring the development of new detection methods.Here the purpose of the study is to improve detection accuracy.Feature Selection(FS)is critical.At the same time,the IDS’s computational problem is limited by focusing on the most relevant elements,and its performance and accuracy increase.In this research work,the suggested Adaptive butterfly optimization algorithm(ABOA)framework is used to assess the effectiveness of a reduced feature subset during the feature selection phase,that was motivated by this motive Candidates.Accurate classification is not compromised by using an ABOA technique.The design of Deep Neural Networks(DNN)has simplified the categorization of network traffic into normal and DDoS threat traffic.DNN’s parameters can be finetuned to detect DDoS attacks better using specially built algorithms.Reduced reconstruction error,no exploding or vanishing gradients,and reduced network are all benefits of the changes outlined in this paper.When it comes to performance criteria like accuracy,precision,recall,and F1-Score are the performance measures that show the suggested architecture outperforms the other existing approaches.Hence the proposed ABOA+DNN is an excellent method for obtaining accurate predictions,with an improved accuracy rate of 99.05%compared to other existing approaches.展开更多
Based on analyzing the techniques and architecture of existing network Intrusion Detection System (IDS), and probing into the fundament of Immune System (IS), a novel immune model is presented and applied to network I...Based on analyzing the techniques and architecture of existing network Intrusion Detection System (IDS), and probing into the fundament of Immune System (IS), a novel immune model is presented and applied to network IDS, which is helpful to design an effective IDS. Besides, this paper suggests a scheme to represent the self profile of network. And an automated self profile extraction algorithm is provided to extract self profile from packets. The experimental results prove validity of the scheme and algorithm, which is the foundation of the immune model.展开更多
Due to the increasing number of cyber-attacks,the necessity to develop efficient intrusion detection systems(IDS)is more imperative than ever.In IDS research,the most effectively used methodology is based on supervise...Due to the increasing number of cyber-attacks,the necessity to develop efficient intrusion detection systems(IDS)is more imperative than ever.In IDS research,the most effectively used methodology is based on supervised Neural Networks(NN)and unsupervised clustering,but there are few works dedicated to their hybridization with metaheuristic algorithms.As intrusion detection data usually contains several features,it is essential to select the best ones appropriately.Linear Discriminant Analysis(LDA)and t-statistic are considered as efficient conventional techniques to select the best features,but they have been little exploited in IDS design.Thus,the research proposed in this paper can be summarized as follows.a)The proposed approach aims to use hybridized unsupervised and hybridized supervised detection processes of all the attack categories in the CICIDS2017 Dataset.Nevertheless,owing to the large size of the CICIDS2017 Dataset,only 25%of the data was used.b)As a feature selection method,the LDAperformancemeasure is chosen and combinedwith the t-statistic.c)For intrusion detection,unsupervised Fuzzy C-means(FCM)clustering and supervised Back-propagation NN are adopted.d)In addition and in order to enhance the suggested classifiers,FCM and NN are hybridized with the seven most known metaheuristic algorithms,including Genetic Algorithm(GA),Particle Swarm Optimization(PSO),Differential Evolution(DE),Cultural Algorithm(CA),Harmony Search(HS),Ant-Lion Optimizer(ALO)and Black Hole(BH)Algorithm.Performance metrics extracted from confusion matrices,such as accuracy,precision,sensitivity and F1-score are exploited.The experimental result for the proposed intrusion detection,based on training and test CICIDS2017 datasets,indicated that PSO,GA and ALO-based NNs can achieve promising results.PSO-NN produces a tested accuracy,global sensitivity and F1-score of 99.97%,99.95%and 99.96%,respectively,outperforming performance concluded in several related works.Furthermore,the best-proposed approaches are valued in the most recent intrusion detection datasets:CSE-CICIDS2018 and LUFlow2020.The evaluation fallouts consolidate the previous results and confirm their correctness.展开更多
Denial of Service(DoS/DDoS)intrusions are damaging cyberattacks,and their identification is of great interest to the Intrusion Detection System(IDS).Existing IDS are mainly based on Machine Learning(ML)methods includi...Denial of Service(DoS/DDoS)intrusions are damaging cyberattacks,and their identification is of great interest to the Intrusion Detection System(IDS).Existing IDS are mainly based on Machine Learning(ML)methods including Deep Neural Networks(DNN),but which are rarely hybridized with other techniques.The intrusion data used are generally imbalanced and contain multiple features.Thus,the proposed approach aims to use a DNN-based method to detect DoS/DDoS attacks using CICIDS2017,CSE-CICIDS2018 and CICDDoS 2019 datasets,according to the following key points.a)Three imbalanced CICIDS2017-2018-2019 datasets,including Benign and DoS/DDoS attack classes,are used.b)A new technique based on K-means is developed to obtain semi-balanced datasets.c)As a feature selectionmethod,LDA(Linear Discriminant Analysis)performance measure is chosen.d)Four metaheuristic algorithms,counting Artificial Immune System(AIS),Firefly Algorithm(FA),Invasive Weeds Optimization(IWO)and Cuckoo Search(CS)are used,for the first time together,to increase the performance of the suggested DNN-based DoS attacks detection.The experimental results,based on semi-balanced training and test datasets,indicated that AIS,FA,IWO and CS-based DNNs can achieve promising results,even when cross-validated.AIS-DNN yields a tested accuracy of 99.97%,99.98%and 99.99%,for the three considered datasets,respectively,outperforming performance established in several related works.展开更多
Information systems are one of the most rapidly changing and vulnerable systems, where security is a major issue. The number of security-breaking attempts originating inside organizations is increasing steadily. Attac...Information systems are one of the most rapidly changing and vulnerable systems, where security is a major issue. The number of security-breaking attempts originating inside organizations is increasing steadily. Attacks made in this way, usually done by "authorized" users of the system, cannot be immediately traced. Because the idea of filtering the traffic at the entrance door, by using firewalls and the like, is not completely successful, the use of intrusion detection systems should be considered to increase the defense capacity of an information system. An intrusion detection system (IDS) is usually working in a dynamically changing environment, which forces continuous tuning of the intrusion detection model, in order to maintain sufficient performance. The manual tuning process required by current IDS depends on the system operators in working out the tuning solution and in integrating it into the detection model. Furthermore, an extensive effort is required to tackle the newly evolving attacks and a deep study is necessary to categorize it into the respective classes. To reduce this dependence, an automatically evolving anomaly IDS using neuro-genetic algorithm is presented. The proposed system automatically tunes the detection model on the fly according to the feedback provided by the system operator when false predictions are encountered. The system has been evaluated using the Knowledge Discovery in Databases Conference (KDD 2009) intrusion detection dataset. Genetic paradigm is employed to choose the predominant features, which reveal the occurrence of intrusions. The neuro-genetic IDS (NGIDS) involves calculation of weightage value for each of the categorical attributes so that data of uniform representation can be processed by the neuro-genetic algorithm. In this system unauthorized invasion of a user are identified and newer types of attacks are sensed and classified respectively by the neuro-genetic algorithm. The experimental results obtained in this work show that the system achieves improvement in terms of misclassification cost when compared with conventional IDS. The results of the experiments show that this system can be deployed based on a real network or database environment for effective prediction of both normal attacks and new attacks.展开更多
The wireless ad-hoc networks are decentralized networks with a dynamic topology that allows for end-to-end communications via multi-hop routing operations with several nodes collaborating themselves,when the destinati...The wireless ad-hoc networks are decentralized networks with a dynamic topology that allows for end-to-end communications via multi-hop routing operations with several nodes collaborating themselves,when the destination and source nodes are not in range of coverage.Because of its wireless type,it has lot of security concerns than an infrastructure networks.Wormhole attacks are one of the most serious security vulnerabilities in the network layers.It is simple to launch,even if there is no prior network experience.Signatures are the sole thing that preventive measures rely on.Intrusion detection systems(IDS)and other reactive measures detect all types of threats.The majority of IDS employ features from various network layers.One issue is calculating a huge layered features set from an ad-hoc network.This research implements genetic algorithm(GA)-based feature reduction intrusion detection approaches to minimize the quantity of wireless feature sets required to identify worm hole attacks.For attack detection,the reduced feature set was put to a fuzzy logic system(FLS).The performance of proposed model was compared with principal component analysis(PCA)and statistical parametric mapping(SPM).Network performance analysis like delay,packet dropping ratio,normalized overhead,packet delivery ratio,average energy consumption,throughput,and control overhead are evaluated and the IDS performance parameters like detection ratio,accuracy,and false alarm rate are evaluated for validation of the proposed model.The proposed model achieves 95.5%in detection ratio with 96.8%accuracy and produces very less false alarm rate(FAR)of 14%when compared with existing techniques.展开更多
The increasing use of the Internet with vehicles has made travel more convenient.However,hackers can attack intelligent vehicles through various technical loopholes,resulting in a range of security issues.Due to these...The increasing use of the Internet with vehicles has made travel more convenient.However,hackers can attack intelligent vehicles through various technical loopholes,resulting in a range of security issues.Due to these security issues,the safety protection technology of the in-vehicle system has become a focus of research.Using the advanced autoencoder network and recurrent neural network in deep learning,we investigated the intrusion detection system based on the in-vehicle system.We combined two algorithms to realize the efficient learning of the vehicle’s boundary behavior and the detection of intrusive behavior.In order to verify the accuracy and efficiency of the proposed model,it was evaluated using real vehicle data.The experimental results show that the combination of the two technologies can effectively and accurately identify abnormal boundary behavior.The parameters of the model are self-iteratively updated using the time-based back propagation algorithm.We verified that the model proposed in this study can reach a nearly 96%accurate detection rate.展开更多
Genetic algorithm(GA) has received significant attention for the design and implementation of intrusion detection systems. In this paper, it is proposed to use variable length chromosomes(VLCs) in a GA-based network i...Genetic algorithm(GA) has received significant attention for the design and implementation of intrusion detection systems. In this paper, it is proposed to use variable length chromosomes(VLCs) in a GA-based network intrusion detection system.Fewer chromosomes with relevant features are used for rule generation. An effective fitness function is used to define the fitness of each rule. Each chromosome will have one or more rules in it. As each chromosome is a complete solution to the problem, fewer chromosomes are sufficient for effective intrusion detection. This reduces the computational time. The proposed approach is tested using Defense Advanced Research Project Agency(DARPA) 1998 data. The experimental results show that the proposed approach is efficient in network intrusion detection.展开更多
为保障医院信息网络的安全管理,避免医疗信息泄露,提出了基于深度生成模型的医院网络异常信息入侵检测算法。采用二进制小波变换方法,多尺度分解医院网络运行数据,结合自适应软门限去噪系数提取有效数据。运用最优运输理论中的Wasserst...为保障医院信息网络的安全管理,避免医疗信息泄露,提出了基于深度生成模型的医院网络异常信息入侵检测算法。采用二进制小波变换方法,多尺度分解医院网络运行数据,结合自适应软门限去噪系数提取有效数据。运用最优运输理论中的Wasserstein距离算法与MMD(Maximun Mean Discrepancy)距离算法,在深度生成模型中,对医院网络数据展开降维处理。向异常检测模型中输入降维后网络正常运行数据样本,并提取样本特征。利用深度学习策略中的Adam算法,生成异常信息判别函数,通过待测网络运行数据与正常网络运行数据的特征对比,实现医院网络异常信息入侵检测。实验结果表明,算法能实现对医院网络异常信息入侵的高效检测,精准检测多类型网络入侵行为,为医疗机构网络运行提供安全保障。展开更多
文摘Mobile ad-hoc networks(MANET)are garnering a lot of attention because of their potential to provide low-cost solutions to real-world communica-tions.MANETs are more vulnerable to security threats.Changes in nodes,band-width limits,and centralized control and management are some of the characteristics.IDS(Intrusion Detection System)are the aid for detection,deter-mination,and identification of illegal system activity such as use,copying,mod-ification,and destruction of data.To address the identified issues,academics have begun to concentrate on building IDS-based machine learning algorithms.Deep learning is a type of machine learning that can produce exceptional outcomes.This study proposes that WOA-DNN be used to detect and classify incursions in MANET(Whale Optimized Deep Neural Network Model)WOA(Whale Opti-mization Algorithm)and DNN(Deep Neural Network)are used to optimize the preprocessed data to construct a system for classifying and predicting unantici-pated cyber-attacks that are both effective and efficient.As a result,secure data transport to other nodes is provided,preventing intruder attacks.The invaders are found using the(Machine Learning)ML-IDS and WOA-DNN methods.The data is reduced in dimensionality using Principal Component Analysis(PCA),which improves the accuracy of the outputs.A classifier is used in forward propagation to predict whether a result is normal or malicious.To compare the traditional and proposed models’effectiveness,the accuracy of classification,detection of the attack rate,precision rate,and F-Measure,Recall are utilized.The proposed WOA-DNN model has higher assessment metrics and a 99.1%accuracy rate.WOA-DNN also has a greater assault detection rate than others,resulting in fewer false alarms.The classification accuracy of the proposed WOA-DNN model is 99.1%.
文摘In this paper, we conduct research on the network intrusion detection system based on the modified particle swarm optimization algorithm. Computer interconnection ability put forward the higher requirements for the system reliability design, the need to ensure that the system can support various communication protocols to guarantee the reliability and security of the network. At the same time also require network system, the server or products have strong ability of fault tolerance and redundancy, better meet the needs of users, to ensure the safety of the information data and the good operation of the network system. For this target, we propose the novel paradigm for the enhancement of the modern computer network that is innovative.
文摘In this paper, we conduct research on the novel computer network intrusion detection model based on improved particle swarmoptimization algorithm. TCP fl ood attack, UDP fl ood attack, ICMP fl ood attack, deformity of message attack, the application layer attack is themost typical DDOS attacks, DDOS attacks are also changing to upgrade at the same time, scholars research on DDOS attack defense measuresbecome more and more has the application value and basic practical signifi cance. Network security protection is a comprehensive project, nomatter what measures to take that safety is always relative, so as the network security administrator, should change with the network securitysituation and the security requirements, moderate to adjust security policies, so as to achieve the target. Under this basis, we propose the newperspective on the IDS system that will then enhance the robustness and safetiness of the overall network system.
文摘Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualization deployment,the cloud environment is exposed to a wide variety of cyber-attacks and security difficulties.The Intrusion Detection System(IDS)is a specialized security tool that network professionals use for the safety and security of the networks against attacks launched from various sources.DDoS attacks are becoming more frequent and powerful,and their attack pathways are continually changing,which requiring the development of new detection methods.Here the purpose of the study is to improve detection accuracy.Feature Selection(FS)is critical.At the same time,the IDS’s computational problem is limited by focusing on the most relevant elements,and its performance and accuracy increase.In this research work,the suggested Adaptive butterfly optimization algorithm(ABOA)framework is used to assess the effectiveness of a reduced feature subset during the feature selection phase,that was motivated by this motive Candidates.Accurate classification is not compromised by using an ABOA technique.The design of Deep Neural Networks(DNN)has simplified the categorization of network traffic into normal and DDoS threat traffic.DNN’s parameters can be finetuned to detect DDoS attacks better using specially built algorithms.Reduced reconstruction error,no exploding or vanishing gradients,and reduced network are all benefits of the changes outlined in this paper.When it comes to performance criteria like accuracy,precision,recall,and F1-Score are the performance measures that show the suggested architecture outperforms the other existing approaches.Hence the proposed ABOA+DNN is an excellent method for obtaining accurate predictions,with an improved accuracy rate of 99.05%compared to other existing approaches.
基金the National Natural Science Foundation of China(69983005)and the Research Fund for the Doctoral Program of Higher Education(RFDP1999048602)
文摘Based on analyzing the techniques and architecture of existing network Intrusion Detection System (IDS), and probing into the fundament of Immune System (IS), a novel immune model is presented and applied to network IDS, which is helpful to design an effective IDS. Besides, this paper suggests a scheme to represent the self profile of network. And an automated self profile extraction algorithm is provided to extract self profile from packets. The experimental results prove validity of the scheme and algorithm, which is the foundation of the immune model.
文摘Due to the increasing number of cyber-attacks,the necessity to develop efficient intrusion detection systems(IDS)is more imperative than ever.In IDS research,the most effectively used methodology is based on supervised Neural Networks(NN)and unsupervised clustering,but there are few works dedicated to their hybridization with metaheuristic algorithms.As intrusion detection data usually contains several features,it is essential to select the best ones appropriately.Linear Discriminant Analysis(LDA)and t-statistic are considered as efficient conventional techniques to select the best features,but they have been little exploited in IDS design.Thus,the research proposed in this paper can be summarized as follows.a)The proposed approach aims to use hybridized unsupervised and hybridized supervised detection processes of all the attack categories in the CICIDS2017 Dataset.Nevertheless,owing to the large size of the CICIDS2017 Dataset,only 25%of the data was used.b)As a feature selection method,the LDAperformancemeasure is chosen and combinedwith the t-statistic.c)For intrusion detection,unsupervised Fuzzy C-means(FCM)clustering and supervised Back-propagation NN are adopted.d)In addition and in order to enhance the suggested classifiers,FCM and NN are hybridized with the seven most known metaheuristic algorithms,including Genetic Algorithm(GA),Particle Swarm Optimization(PSO),Differential Evolution(DE),Cultural Algorithm(CA),Harmony Search(HS),Ant-Lion Optimizer(ALO)and Black Hole(BH)Algorithm.Performance metrics extracted from confusion matrices,such as accuracy,precision,sensitivity and F1-score are exploited.The experimental result for the proposed intrusion detection,based on training and test CICIDS2017 datasets,indicated that PSO,GA and ALO-based NNs can achieve promising results.PSO-NN produces a tested accuracy,global sensitivity and F1-score of 99.97%,99.95%and 99.96%,respectively,outperforming performance concluded in several related works.Furthermore,the best-proposed approaches are valued in the most recent intrusion detection datasets:CSE-CICIDS2018 and LUFlow2020.The evaluation fallouts consolidate the previous results and confirm their correctness.
文摘Denial of Service(DoS/DDoS)intrusions are damaging cyberattacks,and their identification is of great interest to the Intrusion Detection System(IDS).Existing IDS are mainly based on Machine Learning(ML)methods including Deep Neural Networks(DNN),but which are rarely hybridized with other techniques.The intrusion data used are generally imbalanced and contain multiple features.Thus,the proposed approach aims to use a DNN-based method to detect DoS/DDoS attacks using CICIDS2017,CSE-CICIDS2018 and CICDDoS 2019 datasets,according to the following key points.a)Three imbalanced CICIDS2017-2018-2019 datasets,including Benign and DoS/DDoS attack classes,are used.b)A new technique based on K-means is developed to obtain semi-balanced datasets.c)As a feature selectionmethod,LDA(Linear Discriminant Analysis)performance measure is chosen.d)Four metaheuristic algorithms,counting Artificial Immune System(AIS),Firefly Algorithm(FA),Invasive Weeds Optimization(IWO)and Cuckoo Search(CS)are used,for the first time together,to increase the performance of the suggested DNN-based DoS attacks detection.The experimental results,based on semi-balanced training and test datasets,indicated that AIS,FA,IWO and CS-based DNNs can achieve promising results,even when cross-validated.AIS-DNN yields a tested accuracy of 99.97%,99.98%and 99.99%,for the three considered datasets,respectively,outperforming performance established in several related works.
文摘Information systems are one of the most rapidly changing and vulnerable systems, where security is a major issue. The number of security-breaking attempts originating inside organizations is increasing steadily. Attacks made in this way, usually done by "authorized" users of the system, cannot be immediately traced. Because the idea of filtering the traffic at the entrance door, by using firewalls and the like, is not completely successful, the use of intrusion detection systems should be considered to increase the defense capacity of an information system. An intrusion detection system (IDS) is usually working in a dynamically changing environment, which forces continuous tuning of the intrusion detection model, in order to maintain sufficient performance. The manual tuning process required by current IDS depends on the system operators in working out the tuning solution and in integrating it into the detection model. Furthermore, an extensive effort is required to tackle the newly evolving attacks and a deep study is necessary to categorize it into the respective classes. To reduce this dependence, an automatically evolving anomaly IDS using neuro-genetic algorithm is presented. The proposed system automatically tunes the detection model on the fly according to the feedback provided by the system operator when false predictions are encountered. The system has been evaluated using the Knowledge Discovery in Databases Conference (KDD 2009) intrusion detection dataset. Genetic paradigm is employed to choose the predominant features, which reveal the occurrence of intrusions. The neuro-genetic IDS (NGIDS) involves calculation of weightage value for each of the categorical attributes so that data of uniform representation can be processed by the neuro-genetic algorithm. In this system unauthorized invasion of a user are identified and newer types of attacks are sensed and classified respectively by the neuro-genetic algorithm. The experimental results obtained in this work show that the system achieves improvement in terms of misclassification cost when compared with conventional IDS. The results of the experiments show that this system can be deployed based on a real network or database environment for effective prediction of both normal attacks and new attacks.
文摘The wireless ad-hoc networks are decentralized networks with a dynamic topology that allows for end-to-end communications via multi-hop routing operations with several nodes collaborating themselves,when the destination and source nodes are not in range of coverage.Because of its wireless type,it has lot of security concerns than an infrastructure networks.Wormhole attacks are one of the most serious security vulnerabilities in the network layers.It is simple to launch,even if there is no prior network experience.Signatures are the sole thing that preventive measures rely on.Intrusion detection systems(IDS)and other reactive measures detect all types of threats.The majority of IDS employ features from various network layers.One issue is calculating a huge layered features set from an ad-hoc network.This research implements genetic algorithm(GA)-based feature reduction intrusion detection approaches to minimize the quantity of wireless feature sets required to identify worm hole attacks.For attack detection,the reduced feature set was put to a fuzzy logic system(FLS).The performance of proposed model was compared with principal component analysis(PCA)and statistical parametric mapping(SPM).Network performance analysis like delay,packet dropping ratio,normalized overhead,packet delivery ratio,average energy consumption,throughput,and control overhead are evaluated and the IDS performance parameters like detection ratio,accuracy,and false alarm rate are evaluated for validation of the proposed model.The proposed model achieves 95.5%in detection ratio with 96.8%accuracy and produces very less false alarm rate(FAR)of 14%when compared with existing techniques.
基金This work was supported by Research on the Influences of Network Security Threat Intelligence on Sichuan Government and Enterprises and the Development Countermeasure(Project ID 2018ZR0220)Research on Key Technologies of Network Security Protection in Intelligent Vehicle Based on(Project ID 2018JY0510)+3 种基金the Research on Abnormal Behavior Detection Technology of Automotive CAN Bus Based on Information Entropy(Project ID 2018Z105)the Research on the Training Mechanism of Driverless Network Safety Talents for Sichuan Auto Industry Based on Industry-University Synergy(Project ID 18RKX0667),Research and implementation of traffic cooperative perception and traffic signal optimization of main road(Project ID 2018YF0500707SN)Research and implementation of intelligent traffic control and monitoring system(Project ID 2019YGG0201)Remote upgrade system of intelligent vehicle software(Project ID 2018GZDZX0011).
文摘The increasing use of the Internet with vehicles has made travel more convenient.However,hackers can attack intelligent vehicles through various technical loopholes,resulting in a range of security issues.Due to these security issues,the safety protection technology of the in-vehicle system has become a focus of research.Using the advanced autoencoder network and recurrent neural network in deep learning,we investigated the intrusion detection system based on the in-vehicle system.We combined two algorithms to realize the efficient learning of the vehicle’s boundary behavior and the detection of intrusive behavior.In order to verify the accuracy and efficiency of the proposed model,it was evaluated using real vehicle data.The experimental results show that the combination of the two technologies can effectively and accurately identify abnormal boundary behavior.The parameters of the model are self-iteratively updated using the time-based back propagation algorithm.We verified that the model proposed in this study can reach a nearly 96%accurate detection rate.
文摘Genetic algorithm(GA) has received significant attention for the design and implementation of intrusion detection systems. In this paper, it is proposed to use variable length chromosomes(VLCs) in a GA-based network intrusion detection system.Fewer chromosomes with relevant features are used for rule generation. An effective fitness function is used to define the fitness of each rule. Each chromosome will have one or more rules in it. As each chromosome is a complete solution to the problem, fewer chromosomes are sufficient for effective intrusion detection. This reduces the computational time. The proposed approach is tested using Defense Advanced Research Project Agency(DARPA) 1998 data. The experimental results show that the proposed approach is efficient in network intrusion detection.
文摘为保障医院信息网络的安全管理,避免医疗信息泄露,提出了基于深度生成模型的医院网络异常信息入侵检测算法。采用二进制小波变换方法,多尺度分解医院网络运行数据,结合自适应软门限去噪系数提取有效数据。运用最优运输理论中的Wasserstein距离算法与MMD(Maximun Mean Discrepancy)距离算法,在深度生成模型中,对医院网络数据展开降维处理。向异常检测模型中输入降维后网络正常运行数据样本,并提取样本特征。利用深度学习策略中的Adam算法,生成异常信息判别函数,通过待测网络运行数据与正常网络运行数据的特征对比,实现医院网络异常信息入侵检测。实验结果表明,算法能实现对医院网络异常信息入侵的高效检测,精准检测多类型网络入侵行为,为医疗机构网络运行提供安全保障。