In the 21st century with the exponential growth of the Internet, the vulnerability of the network which connects us is on the rise at a very fast pace. Today organizations are spending millions of dollars to protect t...In the 21st century with the exponential growth of the Internet, the vulnerability of the network which connects us is on the rise at a very fast pace. Today organizations are spending millions of dollars to protect their sensitive data from different vulnerabilities that they face every day. In this paper, a new methodology towards implementing an Intrusion Detection & Prevention System (IDPS) based on Artificial Neural Network (ANN) onto Field Programmable Gate Array (FPGA) is proposed. This system not only detects different network attacks but also prevents them from being propagated. The parallel structure of an ANN makes it potentially fast for the computation of certain tasks. FPGA platforms are the optimum and best choice for the modern digital systems nowadays. The same feature makes ANN well suited for implementation in FPGA technology. Hardware realization of ANN to a large extent depends on the efficient implementation of a single neuron. However FPGA realization of ANNs with a large number of neurons is still a challenging task. The proposed multilayer ANN based IDPS uses multiple neurons for higher performance and greater accuracy. Simulation of the design in MATLAB SIMULINK 2010b by using Knowledge Discovery and Data Mining (KDD) CUP dataset shows a very good performance. Subsequently MATLAB HDL coder was used to generate VHDL code for the proposed design that produced Intellectual Property (IP) cores for Xilinx Targeted Design Platforms. For evaluation purposes the proposed design was synthesized, implemented and tested onto Xilinx Virtex-7 2000T FPGA device.展开更多
In order to improve the detection efficiency of rule-based expert systems, an intrusion detection approach using connectionist expert system is proposed. The approach converts the AND/OR nodes into the corresponding n...In order to improve the detection efficiency of rule-based expert systems, an intrusion detection approach using connectionist expert system is proposed. The approach converts the AND/OR nodes into the corresponding neurons, adopts the three layered feed forward network with full interconnection between layers, translates the feature values into the continuous values belong to the interval [0, 1], shows the confidence degree about intrusion detection rules using the weight values of the neural networks and makes uncertain inference with sigmoid function. Compared with the rule based expert system, the neural network expert system improves the inference efficiency.展开更多
Modern networks are at risk from a variety of threats as a result of the enormous growth in internet-based traffic.By consuming time and resources,intrusive traffic hampers the efficient operation of network infrastru...Modern networks are at risk from a variety of threats as a result of the enormous growth in internet-based traffic.By consuming time and resources,intrusive traffic hampers the efficient operation of network infrastructure.An effective strategy for preventing,detecting,and mitigating intrusion incidents will increase productivity.A crucial element of secure network traffic is Intrusion Detection System(IDS).An IDS system may be host-based or network-based to monitor intrusive network activity.Finding unusual internet traffic has become a severe security risk for intelligent devices.These systems are negatively impacted by several attacks,which are slowing computation.In addition,networked communication anomalies and breaches must be detected using Machine Learning(ML).This paper uses the NSL-KDD data set to propose a novel IDS based on Artificial Neural Networks(ANNs).As a result,the ML model generalizes sufficiently to perform well on untried data.The NSL-KDD dataset shall be utilized for both training and testing.In this paper,we present a custom ANN model architecture using the Keras open-source software package.The specific arrangement of nodes and layers,along with the activation functions,enhances the model’s ability to capture intricate patterns in network data.The performance of the ANN is carefully tested and evaluated,resulting in the identification of a maximum detection accuracy of 97.5%.We thoroughly compared our suggested model to industry-recognized benchmark methods,such as decision classifier combinations and ML classifiers like k-Nearest Neighbors(KNN),Deep Learning(DL),Support Vector Machine(SVM),Long Short-Term Memory(LSTM),Deep Neural Network(DNN),and ANN.It is encouraging to see that our model consistently outperformed each of these tried-and-true techniques in all evaluations.This result underlines the effectiveness of the suggested methodology by demonstrating the ANN’s capacity to accurately assess the effectiveness of the developed strategy in identifying and categorizing instances of network intrusion.展开更多
Cryptographic systems are the most widely used techniques for information security. These systems however have their own pitfalls as they rely on prevention as their sole means of defense. That is why most of the orga...Cryptographic systems are the most widely used techniques for information security. These systems however have their own pitfalls as they rely on prevention as their sole means of defense. That is why most of the organizations are attracted to the intrusion detection systems. The intrusion detection systems can be broadly categorized into two types, Anomaly and Misuse Detection systems. An anomaly-based system detects com-puter intrusions and misuse by monitoring system activity and classifying it as either normal or anomalous. Misuse detection systems can detect almost all known attack patterns;they however are hardly of any use to de-tect yet unknown attacks. In this paper, we use Neural Networks for detecting intrusive web documents avail-able on Internet. For this purpose Back Propagation Neural (BPN) Network architecture is applied that is one of the most popular network architectures for supervised learning. Analysis is carried out on Internet Security and Acceleration (ISA) server 2000 log for finding out the web documents that should not be accessed by the unau-thorized persons in an organization. There are lots of web documents available online on Internet that may be harmful for an organization. Most of these documents are blocked for use, but still users of the organization try to access these documents and may cause problem in the organization network.展开更多
Several data mining techniques such as Hidden Markov Model (HMM), artificial neural network, statistical techniques and expert systems are used to model network packets in the field of intrusion detection. In this pap...Several data mining techniques such as Hidden Markov Model (HMM), artificial neural network, statistical techniques and expert systems are used to model network packets in the field of intrusion detection. In this paper a novel intrusion detection mode based on understandable Neural Network Tree (NNTree) is pre-sented. NNTree is a modular neural network with the overall structure being a Decision Tree (DT), and each non-terminal node being an Expert Neural Network (ENN). One crucial advantage of using NNTrees is that they keep the non-symbolic model ENN’s capability of learning in changing environments. Another potential advantage of using NNTrees is that they are actually “gray boxes” as they can be interpreted easily if the num-ber of inputs for each ENN is limited. We showed through experiments that the trained NNTree achieved a simple ENN at each non-terminal node as well as a satisfying recognition rate of the network packets dataset. We also compared the performance with that of a three-layer backpropagation neural network. Experimental results indicated that the NNTree based intrusion detection model achieved better performance than the neural network based intrusion detection model.展开更多
Wireless sensor networks(WSNs)are considered promising for applications such as military surveillance and healthcare.The security of these networks must be ensured in order to have reliable applications.Securing such ...Wireless sensor networks(WSNs)are considered promising for applications such as military surveillance and healthcare.The security of these networks must be ensured in order to have reliable applications.Securing such networks requires more attention,as they typically implement no dedicated security appliance.In addition,the sensors have limited computing resources and power and storage,which makes WSNs vulnerable to various attacks,especially denial of service(DoS).The main types of DoS attacks against WSNs are blackhole,grayhole,flooding,and scheduling.There are two primary techniques to build an intrusion detection system(IDS):signature-based and data-driven-based.This study uses the data-driven approach since the signature-based method fails to detect a zero-day attack.Several publications have proposed data-driven approaches to protect WSNs against such attacks.These approaches are based on either the traditional machine learning(ML)method or a deep learning model.The fundamental limitations of these methods include the use of raw features to build an intrusion detection model,which can result in low detection accuracy.This study implements entity embedding to transform the raw features to a more robust representation that can enable more precise detection and demonstrates how the proposed method can outperform state-of-the-art solutions in terms of recognition accuracy.展开更多
Education acts as an important part of economic growth and improvement in human welfare.The educational sectors have transformed a lot in recent days,and Information and Communication Technology(ICT)is an effective pa...Education acts as an important part of economic growth and improvement in human welfare.The educational sectors have transformed a lot in recent days,and Information and Communication Technology(ICT)is an effective part of the education field.Almost every action in university and college,right from the process fromcounselling to admissions and fee deposits has been automated.Attendance records,quiz,evaluation,mark,and grade submissions involved the utilization of the ICT.Therefore,security is essential to accomplish cybersecurity in higher security institutions(HEIs).In this view,this study develops an Automated Outlier Detection for CyberSecurity in Higher Education Institutions(AOD-CSHEI)technique.The AOD-CSHEI technique intends to determine the presence of intrusions or attacks in the HEIs.The AOD-CSHEI technique initially performs data pre-processing in two stages namely data conversion and class labelling.In addition,the Adaptive Synthetic(ADASYN)technique is exploited for the removal of outliers in the data.Besides,the sparrow search algorithm(SSA)with deep neural network(DNN)model is used for the classification of data into the existence or absence of intrusions in the HEIs network.Finally,the SSA is utilized to effectually adjust the hyper parameters of the DNN approach.In order to showcase the enhanced performance of the AOD-CSHEI technique,a set of simulations take place on three benchmark datasets and the results reported the enhanced efficiency of the AOD-CSHEI technique over its compared methods with higher accuracy of 0.9997.展开更多
Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,a...Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,and can be addressed using clustering and routing techniques.Information is sent from the source to the BS via routing procedures.However,these routing protocols must ensure that packets are delivered securely,guaranteeing that neither adversaries nor unauthentic individuals have access to the sent information.Secure data transfer is intended to protect the data from illegal access,damage,or disruption.Thus,in the proposed model,secure data transmission is developed in an energy-effective manner.A low-energy adaptive clustering hierarchy(LEACH)is developed to efficiently transfer the data.For the intrusion detection systems(IDS),Fuzzy logic and artificial neural networks(ANNs)are proposed.Initially,the nodes were randomly placed in the network and initialized to gather information.To ensure fair energy dissipation between the nodes,LEACH randomly chooses cluster heads(CHs)and allocates this role to the various nodes based on a round-robin management mechanism.The intrusion-detection procedure was then utilized to determine whether intruders were present in the network.Within the WSN,a Fuzzy interference rule was utilized to distinguish the malicious nodes from legal nodes.Subsequently,an ANN was employed to distinguish the harmful nodes from suspicious nodes.The effectiveness of the proposed approach was validated using metrics that attained 97%accuracy,97%specificity,and 97%sensitivity of 95%.Thus,it was proved that the LEACH and Fuzzy-based IDS approaches are the best choices for securing data transmission in an energy-efficient manner.展开更多
文摘In the 21st century with the exponential growth of the Internet, the vulnerability of the network which connects us is on the rise at a very fast pace. Today organizations are spending millions of dollars to protect their sensitive data from different vulnerabilities that they face every day. In this paper, a new methodology towards implementing an Intrusion Detection & Prevention System (IDPS) based on Artificial Neural Network (ANN) onto Field Programmable Gate Array (FPGA) is proposed. This system not only detects different network attacks but also prevents them from being propagated. The parallel structure of an ANN makes it potentially fast for the computation of certain tasks. FPGA platforms are the optimum and best choice for the modern digital systems nowadays. The same feature makes ANN well suited for implementation in FPGA technology. Hardware realization of ANN to a large extent depends on the efficient implementation of a single neuron. However FPGA realization of ANNs with a large number of neurons is still a challenging task. The proposed multilayer ANN based IDPS uses multiple neurons for higher performance and greater accuracy. Simulation of the design in MATLAB SIMULINK 2010b by using Knowledge Discovery and Data Mining (KDD) CUP dataset shows a very good performance. Subsequently MATLAB HDL coder was used to generate VHDL code for the proposed design that produced Intellectual Property (IP) cores for Xilinx Targeted Design Platforms. For evaluation purposes the proposed design was synthesized, implemented and tested onto Xilinx Virtex-7 2000T FPGA device.
文摘In order to improve the detection efficiency of rule-based expert systems, an intrusion detection approach using connectionist expert system is proposed. The approach converts the AND/OR nodes into the corresponding neurons, adopts the three layered feed forward network with full interconnection between layers, translates the feature values into the continuous values belong to the interval [0, 1], shows the confidence degree about intrusion detection rules using the weight values of the neural networks and makes uncertain inference with sigmoid function. Compared with the rule based expert system, the neural network expert system improves the inference efficiency.
基金extend their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research(IFKSURC-1-7109).
文摘Modern networks are at risk from a variety of threats as a result of the enormous growth in internet-based traffic.By consuming time and resources,intrusive traffic hampers the efficient operation of network infrastructure.An effective strategy for preventing,detecting,and mitigating intrusion incidents will increase productivity.A crucial element of secure network traffic is Intrusion Detection System(IDS).An IDS system may be host-based or network-based to monitor intrusive network activity.Finding unusual internet traffic has become a severe security risk for intelligent devices.These systems are negatively impacted by several attacks,which are slowing computation.In addition,networked communication anomalies and breaches must be detected using Machine Learning(ML).This paper uses the NSL-KDD data set to propose a novel IDS based on Artificial Neural Networks(ANNs).As a result,the ML model generalizes sufficiently to perform well on untried data.The NSL-KDD dataset shall be utilized for both training and testing.In this paper,we present a custom ANN model architecture using the Keras open-source software package.The specific arrangement of nodes and layers,along with the activation functions,enhances the model’s ability to capture intricate patterns in network data.The performance of the ANN is carefully tested and evaluated,resulting in the identification of a maximum detection accuracy of 97.5%.We thoroughly compared our suggested model to industry-recognized benchmark methods,such as decision classifier combinations and ML classifiers like k-Nearest Neighbors(KNN),Deep Learning(DL),Support Vector Machine(SVM),Long Short-Term Memory(LSTM),Deep Neural Network(DNN),and ANN.It is encouraging to see that our model consistently outperformed each of these tried-and-true techniques in all evaluations.This result underlines the effectiveness of the suggested methodology by demonstrating the ANN’s capacity to accurately assess the effectiveness of the developed strategy in identifying and categorizing instances of network intrusion.
文摘Cryptographic systems are the most widely used techniques for information security. These systems however have their own pitfalls as they rely on prevention as their sole means of defense. That is why most of the organizations are attracted to the intrusion detection systems. The intrusion detection systems can be broadly categorized into two types, Anomaly and Misuse Detection systems. An anomaly-based system detects com-puter intrusions and misuse by monitoring system activity and classifying it as either normal or anomalous. Misuse detection systems can detect almost all known attack patterns;they however are hardly of any use to de-tect yet unknown attacks. In this paper, we use Neural Networks for detecting intrusive web documents avail-able on Internet. For this purpose Back Propagation Neural (BPN) Network architecture is applied that is one of the most popular network architectures for supervised learning. Analysis is carried out on Internet Security and Acceleration (ISA) server 2000 log for finding out the web documents that should not be accessed by the unau-thorized persons in an organization. There are lots of web documents available online on Internet that may be harmful for an organization. Most of these documents are blocked for use, but still users of the organization try to access these documents and may cause problem in the organization network.
基金Supported in part by the National Natural Science Foundation of China (No.60272046, No.60102011), Na-tional High Technology Project of China (No.2002AA143010), Natural Science Foundation of Jiangsu Province (No.BK2001042), and the Foundation for Excellent Doctoral Dissertation of Southeast Univer-sity (No.YBJJ0412).
文摘Several data mining techniques such as Hidden Markov Model (HMM), artificial neural network, statistical techniques and expert systems are used to model network packets in the field of intrusion detection. In this paper a novel intrusion detection mode based on understandable Neural Network Tree (NNTree) is pre-sented. NNTree is a modular neural network with the overall structure being a Decision Tree (DT), and each non-terminal node being an Expert Neural Network (ENN). One crucial advantage of using NNTrees is that they keep the non-symbolic model ENN’s capability of learning in changing environments. Another potential advantage of using NNTrees is that they are actually “gray boxes” as they can be interpreted easily if the num-ber of inputs for each ENN is limited. We showed through experiments that the trained NNTree achieved a simple ENN at each non-terminal node as well as a satisfying recognition rate of the network packets dataset. We also compared the performance with that of a three-layer backpropagation neural network. Experimental results indicated that the NNTree based intrusion detection model achieved better performance than the neural network based intrusion detection model.
基金This publication was supported by the Deanship of Scientific Research at Prince Sattam bin Abdulaziz University。
文摘Wireless sensor networks(WSNs)are considered promising for applications such as military surveillance and healthcare.The security of these networks must be ensured in order to have reliable applications.Securing such networks requires more attention,as they typically implement no dedicated security appliance.In addition,the sensors have limited computing resources and power and storage,which makes WSNs vulnerable to various attacks,especially denial of service(DoS).The main types of DoS attacks against WSNs are blackhole,grayhole,flooding,and scheduling.There are two primary techniques to build an intrusion detection system(IDS):signature-based and data-driven-based.This study uses the data-driven approach since the signature-based method fails to detect a zero-day attack.Several publications have proposed data-driven approaches to protect WSNs against such attacks.These approaches are based on either the traditional machine learning(ML)method or a deep learning model.The fundamental limitations of these methods include the use of raw features to build an intrusion detection model,which can result in low detection accuracy.This study implements entity embedding to transform the raw features to a more robust representation that can enable more precise detection and demonstrates how the proposed method can outperform state-of-the-art solutions in terms of recognition accuracy.
基金The authors extend their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number(IFPRC-154-611-2020)and King Abdulaziz University,DSR,Jeddah,Saudi Arabia.
文摘Education acts as an important part of economic growth and improvement in human welfare.The educational sectors have transformed a lot in recent days,and Information and Communication Technology(ICT)is an effective part of the education field.Almost every action in university and college,right from the process fromcounselling to admissions and fee deposits has been automated.Attendance records,quiz,evaluation,mark,and grade submissions involved the utilization of the ICT.Therefore,security is essential to accomplish cybersecurity in higher security institutions(HEIs).In this view,this study develops an Automated Outlier Detection for CyberSecurity in Higher Education Institutions(AOD-CSHEI)technique.The AOD-CSHEI technique intends to determine the presence of intrusions or attacks in the HEIs.The AOD-CSHEI technique initially performs data pre-processing in two stages namely data conversion and class labelling.In addition,the Adaptive Synthetic(ADASYN)technique is exploited for the removal of outliers in the data.Besides,the sparrow search algorithm(SSA)with deep neural network(DNN)model is used for the classification of data into the existence or absence of intrusions in the HEIs network.Finally,the SSA is utilized to effectually adjust the hyper parameters of the DNN approach.In order to showcase the enhanced performance of the AOD-CSHEI technique,a set of simulations take place on three benchmark datasets and the results reported the enhanced efficiency of the AOD-CSHEI technique over its compared methods with higher accuracy of 0.9997.
文摘Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,and can be addressed using clustering and routing techniques.Information is sent from the source to the BS via routing procedures.However,these routing protocols must ensure that packets are delivered securely,guaranteeing that neither adversaries nor unauthentic individuals have access to the sent information.Secure data transfer is intended to protect the data from illegal access,damage,or disruption.Thus,in the proposed model,secure data transmission is developed in an energy-effective manner.A low-energy adaptive clustering hierarchy(LEACH)is developed to efficiently transfer the data.For the intrusion detection systems(IDS),Fuzzy logic and artificial neural networks(ANNs)are proposed.Initially,the nodes were randomly placed in the network and initialized to gather information.To ensure fair energy dissipation between the nodes,LEACH randomly chooses cluster heads(CHs)and allocates this role to the various nodes based on a round-robin management mechanism.The intrusion-detection procedure was then utilized to determine whether intruders were present in the network.Within the WSN,a Fuzzy interference rule was utilized to distinguish the malicious nodes from legal nodes.Subsequently,an ANN was employed to distinguish the harmful nodes from suspicious nodes.The effectiveness of the proposed approach was validated using metrics that attained 97%accuracy,97%specificity,and 97%sensitivity of 95%.Thus,it was proved that the LEACH and Fuzzy-based IDS approaches are the best choices for securing data transmission in an energy-efficient manner.