期刊文献+
共找到59篇文章
< 1 2 3 >
每页显示 20 50 100
Hardware Realization of Artificial Neural Network Based Intrusion Detection &Prevention System
1
作者 Indraneel Mukhopadhyay Mohuya Chakraborty 《Journal of Information Security》 2014年第4期154-165,共12页
In the 21st century with the exponential growth of the Internet, the vulnerability of the network which connects us is on the rise at a very fast pace. Today organizations are spending millions of dollars to protect t... In the 21st century with the exponential growth of the Internet, the vulnerability of the network which connects us is on the rise at a very fast pace. Today organizations are spending millions of dollars to protect their sensitive data from different vulnerabilities that they face every day. In this paper, a new methodology towards implementing an Intrusion Detection & Prevention System (IDPS) based on Artificial Neural Network (ANN) onto Field Programmable Gate Array (FPGA) is proposed. This system not only detects different network attacks but also prevents them from being propagated. The parallel structure of an ANN makes it potentially fast for the computation of certain tasks. FPGA platforms are the optimum and best choice for the modern digital systems nowadays. The same feature makes ANN well suited for implementation in FPGA technology. Hardware realization of ANN to a large extent depends on the efficient implementation of a single neuron. However FPGA realization of ANNs with a large number of neurons is still a challenging task. The proposed multilayer ANN based IDPS uses multiple neurons for higher performance and greater accuracy. Simulation of the design in MATLAB SIMULINK 2010b by using Knowledge Discovery and Data Mining (KDD) CUP dataset shows a very good performance. Subsequently MATLAB HDL coder was used to generate VHDL code for the proposed design that produced Intellectual Property (IP) cores for Xilinx Targeted Design Platforms. For evaluation purposes the proposed design was synthesized, implemented and tested onto Xilinx Virtex-7 2000T FPGA device. 展开更多
关键词 artificial neural network FEED Forward Multilayer ANN intrusion detection & Prevention system FPGA VHDL VIRTEX 7
下载PDF
Using Genetic Algorithm to Support Artificial Neural Network for Intrusion Detection System
2
作者 Amin Dastanpour Suhaimi Ibrahim Reza Mashinchi Ali Selamat 《通讯和计算机(中英文版)》 2014年第2期143-147,共5页
关键词 入侵检测系统 人工神经网络 遗传算法 神经网络优化 ANN 数据集 攻击 线程
下载PDF
Intrusion Detection Approach Using Connectionist Expert System
3
作者 马锐 刘玉树 杜彦辉 《Journal of Beijing Institute of Technology》 EI CAS 2005年第4期467-470,共4页
In order to improve the detection efficiency of rule-based expert systems, an intrusion detection approach using connectionist expert system is proposed. The approach converts the AND/OR nodes into the corresponding n... In order to improve the detection efficiency of rule-based expert systems, an intrusion detection approach using connectionist expert system is proposed. The approach converts the AND/OR nodes into the corresponding neurons, adopts the three layered feed forward network with full interconnection between layers, translates the feature values into the continuous values belong to the interval [0, 1], shows the confidence degree about intrusion detection rules using the weight values of the neural networks and makes uncertain inference with sigmoid function. Compared with the rule based expert system, the neural network expert system improves the inference efficiency. 展开更多
关键词 intrusion detection neural networks expert system
下载PDF
Artificial Neural Network for Misuse Detection 被引量:1
4
作者 Laheeb Mohammad Ibrahim 《通讯和计算机(中英文版)》 2010年第6期38-48,共11页
关键词 人工神经网络 滥用检测 ELMAN神经网络 入侵检测系统 计算机网络 攻击者 智能方法 网络流量
下载PDF
Intrusion Detection System with Customized Machine Learning Techniques for NSL-KDD Dataset 被引量:1
5
作者 Mohammed Zakariah Salman A.AlQahtani +1 位作者 Abdulaziz M.Alawwad Abdullilah A.Alotaibi 《Computers, Materials & Continua》 SCIE EI 2023年第12期4025-4054,共30页
Modern networks are at risk from a variety of threats as a result of the enormous growth in internet-based traffic.By consuming time and resources,intrusive traffic hampers the efficient operation of network infrastru... Modern networks are at risk from a variety of threats as a result of the enormous growth in internet-based traffic.By consuming time and resources,intrusive traffic hampers the efficient operation of network infrastructure.An effective strategy for preventing,detecting,and mitigating intrusion incidents will increase productivity.A crucial element of secure network traffic is Intrusion Detection System(IDS).An IDS system may be host-based or network-based to monitor intrusive network activity.Finding unusual internet traffic has become a severe security risk for intelligent devices.These systems are negatively impacted by several attacks,which are slowing computation.In addition,networked communication anomalies and breaches must be detected using Machine Learning(ML).This paper uses the NSL-KDD data set to propose a novel IDS based on Artificial Neural Networks(ANNs).As a result,the ML model generalizes sufficiently to perform well on untried data.The NSL-KDD dataset shall be utilized for both training and testing.In this paper,we present a custom ANN model architecture using the Keras open-source software package.The specific arrangement of nodes and layers,along with the activation functions,enhances the model’s ability to capture intricate patterns in network data.The performance of the ANN is carefully tested and evaluated,resulting in the identification of a maximum detection accuracy of 97.5%.We thoroughly compared our suggested model to industry-recognized benchmark methods,such as decision classifier combinations and ML classifiers like k-Nearest Neighbors(KNN),Deep Learning(DL),Support Vector Machine(SVM),Long Short-Term Memory(LSTM),Deep Neural Network(DNN),and ANN.It is encouraging to see that our model consistently outperformed each of these tried-and-true techniques in all evaluations.This result underlines the effectiveness of the suggested methodology by demonstrating the ANN’s capacity to accurately assess the effectiveness of the developed strategy in identifying and categorizing instances of network intrusion. 展开更多
关键词 artificial neural networks intrusion detection system CLASSIFICATION NSL-KDD dataset machine and deep-learning neural network
下载PDF
Designing Intrusion Detection System for Web Documents Using Neural Network
6
作者 Hari Om Tapas K. Sarkar 《Communications and Network》 2010年第1期54-61,共8页
Cryptographic systems are the most widely used techniques for information security. These systems however have their own pitfalls as they rely on prevention as their sole means of defense. That is why most of the orga... Cryptographic systems are the most widely used techniques for information security. These systems however have their own pitfalls as they rely on prevention as their sole means of defense. That is why most of the organizations are attracted to the intrusion detection systems. The intrusion detection systems can be broadly categorized into two types, Anomaly and Misuse Detection systems. An anomaly-based system detects com-puter intrusions and misuse by monitoring system activity and classifying it as either normal or anomalous. Misuse detection systems can detect almost all known attack patterns;they however are hardly of any use to de-tect yet unknown attacks. In this paper, we use Neural Networks for detecting intrusive web documents avail-able on Internet. For this purpose Back Propagation Neural (BPN) Network architecture is applied that is one of the most popular network architectures for supervised learning. Analysis is carried out on Internet Security and Acceleration (ISA) server 2000 log for finding out the web documents that should not be accessed by the unau-thorized persons in an organization. There are lots of web documents available online on Internet that may be harmful for an organization. Most of these documents are blocked for use, but still users of the organization try to access these documents and may cause problem in the organization network. 展开更多
关键词 intrusion detection system neural network back propagation network ANOMALY detection misuse detection
下载PDF
A NOVEL INTRUSION DETECTION MODE BASED ON UNDERSTANDABLE NEURAL NETWORK TREES 被引量:1
7
作者 Xu Qinzhen Yang Luxi +1 位作者 Zhao Qiangfu He Zhenya 《Journal of Electronics(China)》 2006年第4期574-579,共6页
Several data mining techniques such as Hidden Markov Model (HMM), artificial neural network, statistical techniques and expert systems are used to model network packets in the field of intrusion detection. In this pap... Several data mining techniques such as Hidden Markov Model (HMM), artificial neural network, statistical techniques and expert systems are used to model network packets in the field of intrusion detection. In this paper a novel intrusion detection mode based on understandable Neural Network Tree (NNTree) is pre-sented. NNTree is a modular neural network with the overall structure being a Decision Tree (DT), and each non-terminal node being an Expert Neural Network (ENN). One crucial advantage of using NNTrees is that they keep the non-symbolic model ENN’s capability of learning in changing environments. Another potential advantage of using NNTrees is that they are actually “gray boxes” as they can be interpreted easily if the num-ber of inputs for each ENN is limited. We showed through experiments that the trained NNTree achieved a simple ENN at each non-terminal node as well as a satisfying recognition rate of the network packets dataset. We also compared the performance with that of a three-layer backpropagation neural network. Experimental results indicated that the NNTree based intrusion detection model achieved better performance than the neural network based intrusion detection model. 展开更多
关键词 intrusion detection neural network Tree (NNTree) expert neural network (ENN) Decision Tree (DT) Self-organized feature learning
下载PDF
Deep Learning and Entity Embedding-Based Intrusion Detection Model for Wireless Sensor Networks 被引量:3
8
作者 Bandar Almaslukh 《Computers, Materials & Continua》 SCIE EI 2021年第10期1343-1360,共18页
Wireless sensor networks(WSNs)are considered promising for applications such as military surveillance and healthcare.The security of these networks must be ensured in order to have reliable applications.Securing such ... Wireless sensor networks(WSNs)are considered promising for applications such as military surveillance and healthcare.The security of these networks must be ensured in order to have reliable applications.Securing such networks requires more attention,as they typically implement no dedicated security appliance.In addition,the sensors have limited computing resources and power and storage,which makes WSNs vulnerable to various attacks,especially denial of service(DoS).The main types of DoS attacks against WSNs are blackhole,grayhole,flooding,and scheduling.There are two primary techniques to build an intrusion detection system(IDS):signature-based and data-driven-based.This study uses the data-driven approach since the signature-based method fails to detect a zero-day attack.Several publications have proposed data-driven approaches to protect WSNs against such attacks.These approaches are based on either the traditional machine learning(ML)method or a deep learning model.The fundamental limitations of these methods include the use of raw features to build an intrusion detection model,which can result in low detection accuracy.This study implements entity embedding to transform the raw features to a more robust representation that can enable more precise detection and demonstrates how the proposed method can outperform state-of-the-art solutions in terms of recognition accuracy. 展开更多
关键词 Wireless sensor networks intrusion detection deep learning entity embedding artificial neural networks
下载PDF
Optimized Artificial Neural Network Techniques to Improve Cybersecurity of Higher Education Institution
9
作者 Abdullah Saad AL-Malaise AL-Ghamdi Mahmoud Ragab +2 位作者 Maha Farouk S.Sabir Ahmed Elhassanein Ashraf A.Gouda 《Computers, Materials & Continua》 SCIE EI 2022年第8期3385-3399,共15页
Education acts as an important part of economic growth and improvement in human welfare.The educational sectors have transformed a lot in recent days,and Information and Communication Technology(ICT)is an effective pa... Education acts as an important part of economic growth and improvement in human welfare.The educational sectors have transformed a lot in recent days,and Information and Communication Technology(ICT)is an effective part of the education field.Almost every action in university and college,right from the process fromcounselling to admissions and fee deposits has been automated.Attendance records,quiz,evaluation,mark,and grade submissions involved the utilization of the ICT.Therefore,security is essential to accomplish cybersecurity in higher security institutions(HEIs).In this view,this study develops an Automated Outlier Detection for CyberSecurity in Higher Education Institutions(AOD-CSHEI)technique.The AOD-CSHEI technique intends to determine the presence of intrusions or attacks in the HEIs.The AOD-CSHEI technique initially performs data pre-processing in two stages namely data conversion and class labelling.In addition,the Adaptive Synthetic(ADASYN)technique is exploited for the removal of outliers in the data.Besides,the sparrow search algorithm(SSA)with deep neural network(DNN)model is used for the classification of data into the existence or absence of intrusions in the HEIs network.Finally,the SSA is utilized to effectually adjust the hyper parameters of the DNN approach.In order to showcase the enhanced performance of the AOD-CSHEI technique,a set of simulations take place on three benchmark datasets and the results reported the enhanced efficiency of the AOD-CSHEI technique over its compared methods with higher accuracy of 0.9997. 展开更多
关键词 Higher security institutions intrusion detection system artificial intelligence deep neural network hyperparameter tuning deep learning
下载PDF
Effective data transmission through energy-efficient clustering and Fuzzy-Based IDS routing approach in WSNs
10
作者 Saziya TABBASSUM Rajesh Kumar PATHAK 《虚拟现实与智能硬件(中英文)》 EI 2024年第1期1-16,共16页
Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,a... Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,and can be addressed using clustering and routing techniques.Information is sent from the source to the BS via routing procedures.However,these routing protocols must ensure that packets are delivered securely,guaranteeing that neither adversaries nor unauthentic individuals have access to the sent information.Secure data transfer is intended to protect the data from illegal access,damage,or disruption.Thus,in the proposed model,secure data transmission is developed in an energy-effective manner.A low-energy adaptive clustering hierarchy(LEACH)is developed to efficiently transfer the data.For the intrusion detection systems(IDS),Fuzzy logic and artificial neural networks(ANNs)are proposed.Initially,the nodes were randomly placed in the network and initialized to gather information.To ensure fair energy dissipation between the nodes,LEACH randomly chooses cluster heads(CHs)and allocates this role to the various nodes based on a round-robin management mechanism.The intrusion-detection procedure was then utilized to determine whether intruders were present in the network.Within the WSN,a Fuzzy interference rule was utilized to distinguish the malicious nodes from legal nodes.Subsequently,an ANN was employed to distinguish the harmful nodes from suspicious nodes.The effectiveness of the proposed approach was validated using metrics that attained 97%accuracy,97%specificity,and 97%sensitivity of 95%.Thus,it was proved that the LEACH and Fuzzy-based IDS approaches are the best choices for securing data transmission in an energy-efficient manner. 展开更多
关键词 Low energy adaptive clustering hierarchy(LEACH) intrusion detection system(IDS) Wireless sensor network(WSN) Fuzzy logic and artificial neural network(ANN)
下载PDF
基于混合神经网络模型的低速率网络入侵检测研究 被引量:1
11
作者 刘珊珊 李根 管艺博 《成都工业学院学报》 2024年第1期52-56,共5页
针对低速率入侵,常规的入侵检测方法能力不足,虚警率、漏警率偏高。为保证网络安全,提出一种基于混合神经网络模型的低速率网络入侵检测方法。利用NetFlow技术采集网络流量数据,对网络流量数据进行过滤和图像化处理。搭建由卷积神经网... 针对低速率入侵,常规的入侵检测方法能力不足,虚警率、漏警率偏高。为保证网络安全,提出一种基于混合神经网络模型的低速率网络入侵检测方法。利用NetFlow技术采集网络流量数据,对网络流量数据进行过滤和图像化处理。搭建由卷积神经网络和人工神经网络构成的混合神经网络模型,利用卷积神经网络提取网络流量数据的图像提取特征,利用人工神经网络检测网络入侵类型。结果表明:提出方法的虚警率、漏警率低于Transformer入侵检测方法、栈式自编码-长短期记忆(SAE-LSTM)检测方法和萤火虫优化(GSO)-基分类器检测方法,尤其在入侵速率更低(2 Mb/s)的情况下,所表现出的检测能力更为突出,说明针对低速率网络入侵问题,基于混合神经网络模型的检测方法的检测能力更强,检测结果更为准确。 展开更多
关键词 混合神经网络模型 卷积神经网络 人工神经网络 低速率入侵 网络流量数据 入侵检测方法
下载PDF
基于形式化可解释人工智能的网络入侵检测方法
12
作者 周倩如 《智能安全》 2024年第3期34-44,共11页
随着人工智能的火速发展,神经网络被广泛应用到各行各业,但是神经网络模型的不可解释限制了其所做出决策的可信度。目前的可解释机器学习方法大都只能提供模糊的、近似的解释,在涉及安全相关的重要领域,每一个字节的解释偏差都可能引发... 随着人工智能的火速发展,神经网络被广泛应用到各行各业,但是神经网络模型的不可解释限制了其所做出决策的可信度。目前的可解释机器学习方法大都只能提供模糊的、近似的解释,在涉及安全相关的重要领域,每一个字节的解释偏差都可能引发重大误导,可是逻辑严谨、精确的可解释方法会涉及组合爆炸,非常复杂。提出了计算边界值(BIV)算法,一种计算模型决策恒真域和恒假域之间边界的算法。首先,基于模型的权重、偏置和激活函数性质,通过知识编译将模型表示成形式化逻辑表达式——基于阈值的线性函数。然后,通过将模型的决策过程看成是二元对抗博弈,提出恒真域和恒假域的概念,并在此基础上,将逻辑严谨的可解释问题转化成计算恒真域与恒假域边界的问题。随后,提出了直接计算恒真域与恒假域之间边界的算法——BIV算法,可以直接精准计算出形式化解释,即模型的决策规则。最后,在真实DoS网络入侵检测场景上,对BIV算法进行测试,并将结果与现有可解释方法SHAP进行了分析和对比。结果表明,BIV算法不仅可以提供精准严谨的解释,而且在执行效率上有明显优势。 展开更多
关键词 可解释人工智能 知识编译 神经网络 入侵检测
下载PDF
基于人工智能的网络入侵检测方法研究
13
作者 张佳佳 《通信电源技术》 2024年第3期4-6,共3页
随着网络环境的日益复杂和入侵威胁的不断升级,致力于研究一种基于卷积神经网络(Convolutional Neural Networks,CNN)和K-means聚类的网络入侵检测方法。通过构建综合性的网络入侵检测系统架构,利用深度学习和聚类分析相结合的方式,提... 随着网络环境的日益复杂和入侵威胁的不断升级,致力于研究一种基于卷积神经网络(Convolutional Neural Networks,CNN)和K-means聚类的网络入侵检测方法。通过构建综合性的网络入侵检测系统架构,利用深度学习和聚类分析相结合的方式,提高对网络流量中入侵行为的敏感性和准确性。在实验阶段,采用1998DARPA数据集进行验证,通过CNN提取特征向量,并应用K-means聚类进行数据分析,实现对网络入侵的有效检测。结果表明,所提方法在准确率、召回率和精确率等方面表现出色,为网络安全领域提供一种可靠的解决方案。 展开更多
关键词 人工智能 网络安全 入侵检测 卷积神经网络(CNN) K-MEANS聚类
下载PDF
面向入侵检测的Taylor神经网络构建与分析
14
作者 王振东 张林 +2 位作者 杨书新 王俊岭 李大海 《计算机科学与探索》 CSCD 北大核心 2023年第3期748-760,共13页
深度学习方法已成为网络入侵检测的重要手段,但现有深度学习模型无法挖掘出网络入侵数据特征值间隐藏的函数映射关系。对此,设计了Taylor神经网络模型(TNN)。利用Taylor公式对多项式函数的逼近能力与神经网络的优化能力对入侵数据特征... 深度学习方法已成为网络入侵检测的重要手段,但现有深度学习模型无法挖掘出网络入侵数据特征值间隐藏的函数映射关系。对此,设计了Taylor神经网络模型(TNN)。利用Taylor公式对多项式函数的逼近能力与神经网络的优化能力对入侵数据特征间的关系进行挖掘与利用。首先,介绍Taylor神经网络的基本结构。为了将Taylor神经网络引入入侵检测领域,设计了Taylor神经网络层(TNL),并将其与传统深度神经网络结合构建Taylor神经网络模型。为优化Taylor公式的展开项数,引入人工蜂群算法,但传统的人工蜂群算法存在开采能力较差,易陷入“早熟”等问题,因此设计了一种基于高斯过程的人工蜂群算法。实验结果表明,基于Taylor神经网络的入侵检测算法在NSL-KDD和UNSW-NB15数据集上的准确率具有明显优势。 展开更多
关键词 网络安全 入侵检测 TAYLOR公式 神经网络 人工蜂群算法
下载PDF
人工智能技术在网络安全防御中的应用 被引量:4
15
作者 吴越 唐志辉 《集成电路应用》 2023年第8期264-265,共2页
阐述网络安全防御的特点,人工智能技术的优势,网络安全防御现状,探讨人工智能技术在网络安全防御中的应用,包括智能防火墙技术、入侵检测技术、神经网络技术的应用。
关键词 人工智能 网络安全防御 入侵检测 神经网络
下载PDF
基于Elman改进的Snort网络入侵检测软件
16
作者 侯忠响 《移动信息》 2023年第10期144-145,157,共3页
文中基于人工神经网络(ArtificialNeuralNetwork,ANN)改进了SnortIDS。通过人工神经网络工具训练样本集,将训练成功的ANN集成到Snort的预处理器中,优化了Snort攻击检测。经实验验证,改进后的SnortIDS能检测到规则库以外的攻击行为,有效... 文中基于人工神经网络(ArtificialNeuralNetwork,ANN)改进了SnortIDS。通过人工神经网络工具训练样本集,将训练成功的ANN集成到Snort的预处理器中,优化了Snort攻击检测。经实验验证,改进后的SnortIDS能检测到规则库以外的攻击行为,有效检测多种入侵行为。 展开更多
关键词 入侵检测 人工智能技术 神经网络
下载PDF
分布式微入侵检测系统结构研究 被引量:4
17
作者 刘科 韩宗芬 +1 位作者 卢毅军 金海 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2001年第11期45-47,共3页
针对分布式计算和集群服务器的架构提出一种分布式微入侵检测系统结构 .该结构将M IDS(Micro IntrusionDetectionSystem)分布在受保护子网内所有节点机上 ,各个节点的M IDS不仅可以独立检测直接入侵 ,而且可以和中心处理节点合作检测协... 针对分布式计算和集群服务器的架构提出一种分布式微入侵检测系统结构 .该结构将M IDS(Micro IntrusionDetectionSystem)分布在受保护子网内所有节点机上 ,各个节点的M IDS不仅可以独立检测直接入侵 ,而且可以和中心处理节点合作检测协同入侵 .为了使入侵检测系统在具有误用检测优点的同时具有一定的自适应性 。 展开更多
关键词 集群服务器 分布式微入侵检测系统 误用检测 协同入侵 神经网络 计算机网络 网络安全
下载PDF
基于专家系统的入侵检测系统的实现 被引量:7
18
作者 林庆 王飞 +2 位作者 吴旻 廖定安 王敏 《微计算机信息》 北大核心 2007年第03X期61-63,共3页
该文讨论了普通型入侵检测系统的弱点,对人工智能的重要领域专家系统作了简要介绍,提出了一个基于专家系统的实时入侵检测系统的详细设计方案和实现方法,同时举例说明如何定义知识规则库中的规则集。
关键词 人工智能 专家系统 入侵检测 误用入侵检测
下载PDF
神经网络在异常检测中的研究与应用 被引量:6
19
作者 高翔 胡正国 王敏 《仪器仪表学报》 EI CAS CSCD 北大核心 2002年第z2期469-470,共2页
现存的入侵检测系统缺乏从先前所观测到的进攻进行概括并检测已知攻击的细微变化的能力。这里描述了一种基于过程的入侵检测算法,该算法利用人工神经网络的特点,具有从先前观测到的行为进行概括进而判断将来可能发生的行为的能力。本算... 现存的入侵检测系统缺乏从先前所观测到的进攻进行概括并检测已知攻击的细微变化的能力。这里描述了一种基于过程的入侵检测算法,该算法利用人工神经网络的特点,具有从先前观测到的行为进行概括进而判断将来可能发生的行为的能力。本算法主要用于检测新型的网络入侵攻击。 展开更多
关键词 人工神经网络 入侵检测 异常检测
下载PDF
一种基于进化神经网络的混合入侵检测模型 被引量:10
20
作者 屈洪春 王帅 《计算机科学》 CSCD 北大核心 2016年第S1期335-338,共4页
为了提高入侵检测系统的检测率并降低误报率,将误用检测技术和异常检测技术进行结合,以克服采用单一技术的缺陷。采用改进的进化神经网络作为检测引擎,首先,通过对遗传算法进行改进,弥补实数编码全局寻优能力差的缺陷,且降低计算的复杂... 为了提高入侵检测系统的检测率并降低误报率,将误用检测技术和异常检测技术进行结合,以克服采用单一技术的缺陷。采用改进的进化神经网络作为检测引擎,首先,通过对遗传算法进行改进,弥补实数编码全局寻优能力差的缺陷,且降低计算的复杂度,提高进化收敛速度;然后,将改进的遗传算法和BP神经网络的LM算法进行结合,进一步克服神经网络学习阶段训练速度慢和易陷入局部最优的缺点,进而提高神经网络的分类能力和模式识别能力。采用KDDCUP99数据集作为训练与测试数据集进行实验,结果表明,基于改进的进化神经网络建立的混合入侵检测模型在数据特征规则的提取速度、检测精度以及识别新的攻击类型方面有明显改善。 展开更多
关键词 入侵检测 误用检测 异常检测 遗传算法 进化神经网络
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部