期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Intrusion-related Gold Deposits in Egypt
1
作者 Nagy Shawky BOTROS 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第3期1033-1055,共23页
Intrusion-related gold deposits(IRGDs)occur in the Eastern Desert(ED)of Egypt within magmatic districts that are exploited for tungsten and tin mineralization.IRGDs and intrusion-related rare metal deposits(IRRMDs)are... Intrusion-related gold deposits(IRGDs)occur in the Eastern Desert(ED)of Egypt within magmatic districts that are exploited for tungsten and tin mineralization.IRGDs and intrusion-related rare metal deposits(IRRMDs)are almost invariably linked with the late to post collisional Younger Granites(YGs)that have three successive phases(Ⅰ,ⅡandⅢ).At~635–630 Ma,the ED underwent a transition in deformation style from compressional to extensional and a switch from subduction with crustal thickening to delamination with crustal thinning.This transition was concurrent with the emplacement of a short magmatic pulse(~635–630 Ma)that represents a transition between orogenic gold deposits and IRGDs.K-rich calc alkaline granites(phaseⅠandⅡof the YGs)hosting IRGDs like the Hangalia deposit were emplaced during the time span 630–610 Ma.Alkaline magmatism began at 610 Ma,coexisting with the K-rich calc-alkaline magmatism over the 610–590 Ma time span,where the Fawakhir(598±3 Ma)and Um Had(596±2 Ma)granites that host the IRGDs were emplaced.In time,the alkaline magmatism became more alkaline giving rise to phaseⅢof the YGs that hosts IRRMDs.A distinct metallogenic epoch comprising both IRGDs and IRRMDs,was undergoing extreme growth at~600 Ma. 展开更多
关键词 intrusion-related gold deposits intrusion-related rare metal deposits DELAMINATION crustal melting metallogenic epoch ~600 Ma Younger Granites
下载PDF
Decrepitation Thermometry and Compositions of Fluid Inclusions of the Damoqujia Gold Deposit,Jiaodong Gold Province,China:Implications for Metallogeny and Exploration 被引量:30
2
作者 杨立强 邓军 +6 位作者 张静 郭春影 高帮飞 龚庆杰 王庆飞 江少卿 于海军 《Journal of China University of Geosciences》 SCIE CSCD 2008年第4期378-390,共13页
The recently discovered Damoqujia (大磨曲家) gold deposit is a large shear zone-hosted gold deposit of disseminated sulphides located in the north of the Zhaoping (招平) fault zone, Jiaodong (胶东) gold province... The recently discovered Damoqujia (大磨曲家) gold deposit is a large shear zone-hosted gold deposit of disseminated sulphides located in the north of the Zhaoping (招平) fault zone, Jiaodong (胶东) gold province, China. In order to distinguish the temperature range of cluster inclusions from different mineralization stages and measure their compositions, 16 fluid inclusions and 5 isotopic geochemistry samples were collected for this study. Corresponding to different mineralization stages, the multirange peaks of quartz decrepitation temperature (250-270, 310-360 and 380-430℃) indicate that the activity of ore-forming fluids is characterized by multistage. The ore-forming fluids were predominantly of high-temperature fluid system (HTFS) by CO2-rich, and SO4^2--K^+ type magmatic fluid during the early stage of mineralization and were subsequently affected by low-temperature fluid system (LTFS) of CH4-rich, and Cl^--Na^+/Ca^2+ type meteoric fluid during the late stage of mineralization. Gold is transferred by Au-HS^- complex in the HTFS, and Au-Cl^- complex can be more important in the LTFS. The transition of fluids from deeper to shallow environments results in mixing between the HTFS and LTFS, which might be one of the most key reasons for gold precipitation and large-scale mineralization. The ore-forming fluids are characterized by high-temperature, strong-activity, and superimposed mineralization, so that there is a great probability of forming large and rich ore deposit in the Damoqujia gold deposit. The main bodies are preserved and extend toward deeper parts, thereby suggesting a great potential in future. 展开更多
关键词 decrepitation thermometry composition of fluid inclusion Damoqujia gold deposit orogenic gold deposit intrusion-related gold system EXPLORATION
下载PDF
The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings 被引量:13
3
作者 David I.Groves Richard J.Goldfarb M.Santosh 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第3期303-314,共12页
It is quite evident that it is not anomalous metal transport,nor unique depositional conditions,nor any single factor at the deposit scale,that dictates whether a mineral deposit becomes a giant or not.A hierarchical ... It is quite evident that it is not anomalous metal transport,nor unique depositional conditions,nor any single factor at the deposit scale,that dictates whether a mineral deposit becomes a giant or not.A hierarchical approach thus is required to progressively examine controlling parameters at successively decreasing scales in the total mineral system to understand the location of giant gold deposits in non-arc environments.For giant orogenic,intrusion-related gold systems(IRGS) and Carlin-type gold deposits and iron oxide-copper-gold(IOCG) deposits,there are common factors among all of these at the lithospheric to crustal scale.All are sited in giant gold provinces controlled by complex fundamental fault or shear zones that follow craton margins or,in the case of most Phanerozoic orogenic giants,define the primary suture zones between tectonic terranes.Giant provinces of IRGS,IOCG,and Carlin-type deposits require melting of metasomatized lithosphere beneath craton margins with ascent of hybrid lamprophyric to granitic magmas and associated heat flux to generate the giant province.The IRGS and IOCG deposits require direct exsolution of volatile-rich magmatic-hydrothermal fluids,whereas the association of such melts with Carlin-type ores is more indirect and enigmatic.Giant orogenic gold provinces show no direct relationship to such magmatism.forming from metamorphic fluids,but show an indirect relationship to lamprophyres that reflect the mantle connectivity of controlling first-order structures.In contrast to their province scale similarities,the different giant gold deposit styles show contrasting critical controls at the district to deposit scale.For orogenic gold deposits,the giants appear to have formed by conjunction of a greater number of parameters to those that control smaller deposits,with resultant geometrical and lithostratigraphic complexity as a guide to their location.There are few giant IRGS due to their inferior fluid-flux systems relative to orogenic gold deposits,and those few giants are essentially preservational exceptions.Many Carlin-type deposits are giants due to the exceptional conjunction of both structural and lithological parameters that caused reactive and permeable rocks,enriched in syngenetic gold,to be located below an impermeable cap along antiformal "trends".Hydrocarbons probably played an important role in concentrating metal.The supergiant Post-Betze deposit has additional ore zones in strain heterogeneities surrounding the pre-gold Goldstrike stock.All unequivocal IOCG deposits are giant or near-giant deposits in terms of gold-equivalent resources,partly due to economic factors for this relatively poorly understood,low Cu-Au grade deposit type.The supergiant Olympic Dam deposit,the most shallowly formed deposit among the larger IOCGs,probably owes its origin to eruption of volatile-rich hybrid magma at surface,with formation of a large maar and intense and widespread brecciation,alteration and Cu-Au-U deposition in a huge rock volume. 展开更多
关键词 Giant gold deposits Orogenic gold Carlin deposits Iron oxide-copper-gold deposits intrusion-related gold systems LITHOSPHERE
下载PDF
Geochronology and zircon geochemistry of auriferous intrusions in the Bumo deposit,Hainan Province,China
4
作者 Yan Hai Bingtao Li +9 位作者 Teng Deng Deru Xu Li Wang Youzhong Xiong Xiaowen Zhang Zhiling Wang Shaohao Zou Zhengpeng Ding Qian Qian Shichao Guo 《Acta Geochimica》 EI CAS CSCD 2022年第2期208-225,共18页
Intrusion-related gold deposits(IRGS)are a lowgrade,large-tonnage exploration target.Recently,auriferous magmatic rocks were found in the Bumo deposit of the Gezhen shear zone in Hainan Province,China.However,the geoc... Intrusion-related gold deposits(IRGS)are a lowgrade,large-tonnage exploration target.Recently,auriferous magmatic rocks were found in the Bumo deposit of the Gezhen shear zone in Hainan Province,China.However,the geochronology and geochemical characteristics of the intrusions,as well as the mineralization potential,are still unclear.Field and petrographic work show that the sulfidebearing intrusions can be divided into diorite porphyrites,quartz monzodiorites and monzodiorites.Zircon LA–ICP–MS U–Pb dating demonstrates that diorite porphyrites,quartz monzodiorites and monzodiorites were formed at104±1,114±1,114±1 Ma,respectively.In addition,sulfides in Yanshanian intrusion-related gold mineralization haveδ;S values of 0.2–4.4%,lower than those in Hercynian-Indosinian(1.9–9.8%)orogenic deposits(ca.219–378 Ma)in the Gezhen shear zone.In addition,all these intrusions display close correlations between Eu/EuN*with Th/U,consistent with the differentiation of amphibole,apatite and titanite from a hydrous melt.Moreover,zircon Eu/EuN*in the intrusions are higher than0.4,demonstrating that the magmatic rocks have high water contents and oxygen fugacity values,favorable for gold mineralization.Consequently,the Yanshanian magmatic rocks can be a new potential gold exploration target in the Gezhen shear zone. 展开更多
关键词 HAINAN Bumo intrusion-related mineralization Zircon trace elements Gold mineralization
下载PDF
Petrology,Geochemistry,and Sr-Nd-S Isotopic Compositions of the Ore-Hosting Biotite Monzodiorite in the Luanjiahe Gold Deposit,Jiaodong Peninsula,China 被引量:4
5
作者 Xiaofeng Yao Zhizhong Cheng +3 位作者 Zezhong Du Zhenshan Pang Yuquan Yang Kun Liu 《Journal of Earth Science》 SCIE CAS CSCD 2021年第1期51-67,共17页
The Jiaodong Peninsula is one of the most important Au ore provinces in China.There is an ongoing debate on the correlation between ore formation and magmatism in this province,because few intrusive rocks exhibit a cl... The Jiaodong Peninsula is one of the most important Au ore provinces in China.There is an ongoing debate on the correlation between ore formation and magmatism in this province,because few intrusive rocks exhibit a clear association with ore deposits.A mineralized biotite monzodiorite(BM)stock,with disseminated ore,pervasive phyllic alteration,and no deformation,was found in a borehole in the footwall of the Zhaoping fault within the Luanjiahe Au deposit,which may shed light on this debate.The biotite monzodiorite contains explosion breccias,miarolitic cavities,skeletal and den-dritic quartz,and late-stage evolved aplite dikes,and the in-situδ34S values of the disseminated pyrite which is associated with Au mineralization are-1.7‰ to 7.3‰(mean=3.5‰),indicative of a magmatic-hydrothermal system.These findings,combined with the reported age of 123 Ma,show that the intru-sion has close spatial,temporal,and geochemical relationships with Au mineralization in the area.The biotite monzodiorite is metaluminous,high-K calc-alkaline and shoshonitic,with enrichment in light rare earth elements(REEs)and large-ion lithophile elements(LILEs),depletion in high-field-strength elements(HFSEs),and enriched Sr-Nd isotopic compositions.The intrusion may be the product of par-tial melting of enriched lithospheric mantle with a small lower crustal component.The hydrous,Au-bearing,enriched mantle source,and the strongly oxidized magma that was generated,created fa-vorable conditions for Au mineralization. 展开更多
关键词 Jiaodong Peninsula Luanjiahe deposit intrusion-related gold deposit magmatic-hydrothermal transition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部