The transportation of magma in sedimentary basins often occurs through extensive dyke-sill networks.The role of sills on the plumbing system in rifted margins and the impact of sills on hydrocarbon reservoirs of prosp...The transportation of magma in sedimentary basins often occurs through extensive dyke-sill networks.The role of sills on the plumbing system in rifted margins and the impact of sills on hydrocarbon reservoirs of prospective sedimentary basins has long been an area of great industrial interest and scientific debate.Based on 2D seismic reflection,we present data on how the sills emplaced to form a magmatic plumbing system of the volcanic system for the Zhongjiannan Basin(ZJNB).The results show that sixty-nine sills and fourteen forced folds have been identified.The distribution and geometry of the sills suggest that magma flowed from west to east and then ascended to near the surface.The onlap relationship of the forced folds indicates that the timing of magmatic activities can be constrained at ca.0.2 Ma.The spatial and temporal occurrences of intrusions imply that the strong post-rift magmatism in ZJNB was associated with the Hainan mantle plume arising from the core-mantle boundary.Furthermore,these forced folds could produce several types of hydrocarbon traps,due to accommodation through bending and uplift of the overlying rock and free surface,but it is critical to evaluate the effect of such emplacement when setting exploration targets.展开更多
Sedimentary basins containing igneous intrusions within sedimentary reservoir units represent an important risk in petroleum exploration. The Upper Triassic to Lower Jurassic sediments at Wilhelm?ya(Svalbard) contains...Sedimentary basins containing igneous intrusions within sedimentary reservoir units represent an important risk in petroleum exploration. The Upper Triassic to Lower Jurassic sediments at Wilhelm?ya(Svalbard) contains reservoir heterogeneity as a result of sill emplacement and represent a unique case study to better understand the effect of magmatic intrusions on the general burial diagenesis of siliciclastic sediments. Sills develop contact metamorphic aureoles by conduction as presented in many earlier studies. However, there is significant impact of localized hydrothermal circulation systems affecting reservoir sediments at considerable distance from the sill intrusions. Dolerite sill intrusions in the studied area are of limited vertical extent(~12 m thick), but created localized hydrothermal convection cells affecting sediments at considerable distance(more than five times the thickness of the sill)from the intrusions. We present evidence that the sedimentary sequence can be divided into two units:(1) the bulk poorly lithified sediment with a maximum burial temperature much lower than 60-70 ℃,and(2) thinner intervals outside the contact zone that have experienced hydrothermal temperatures(around 140 ℃). The main diagenetic alteration associated with normal burial diagenesis is minor mechanical plastic deformation of ductile grains such as mica. Mineral grain contacts show no evidence of pressure dissolution and the vitrinite reflectance suggests a maximum temperature of ~40 ℃. Contrary to this, part of the sediment, preferentially along calcite cemented flow baffles, show evidence of hydrothermal alteration. These hydrothermally altered sediment sections are characterized by recrystallized carbonate cemented intervals. Further, the hydrothermal solutions have resulted in localized sericitization(illitization) of feldspars, albitization of both K-feldspar and plagioclase and the formation of fibrous illite nucleated on kaolinite. These observations suggest hydrothermal alteration at T> 120-140 ℃ at distances considerably further away than expected from sill heat dissipation by conduction only, which commonly affect sediments about twice the thickness of the sill intrusion. We propose that carbonate-cemented sections acted as flow baffles already during the hydrothermal fluid mobility and controlled the migration pathways of the buoyant hot fluids. Significant hydrothermally induced diagenetic alterations affecting the porosity and hence reservoir quality was not noted in the noncarbonate-cemented reservoir intervals.展开更多
基金supported by the National Key Research and Development Project(2019YFA0708500)the National Natural Science Foundation of China(No.42202170 and U20B6001)。
文摘The transportation of magma in sedimentary basins often occurs through extensive dyke-sill networks.The role of sills on the plumbing system in rifted margins and the impact of sills on hydrocarbon reservoirs of prospective sedimentary basins has long been an area of great industrial interest and scientific debate.Based on 2D seismic reflection,we present data on how the sills emplaced to form a magmatic plumbing system of the volcanic system for the Zhongjiannan Basin(ZJNB).The results show that sixty-nine sills and fourteen forced folds have been identified.The distribution and geometry of the sills suggest that magma flowed from west to east and then ascended to near the surface.The onlap relationship of the forced folds indicates that the timing of magmatic activities can be constrained at ca.0.2 Ma.The spatial and temporal occurrences of intrusions imply that the strong post-rift magmatism in ZJNB was associated with the Hainan mantle plume arising from the core-mantle boundary.Furthermore,these forced folds could produce several types of hydrocarbon traps,due to accommodation through bending and uplift of the overlying rock and free surface,but it is critical to evaluate the effect of such emplacement when setting exploration targets.
基金(partially)funded by the project"Recon-structing the Triassic Northern Barents shelfbasin inill patternscontrolled by gentle sags and faults"(Trias North-www.mn.uio.no/triasnorth/)under grant 234152 from the Research Council of Nor-waywith financial support from Tullow Oil Norge,LundinNorway,Statoil Petroleum,Edison Norge and RWE Dea Norge
文摘Sedimentary basins containing igneous intrusions within sedimentary reservoir units represent an important risk in petroleum exploration. The Upper Triassic to Lower Jurassic sediments at Wilhelm?ya(Svalbard) contains reservoir heterogeneity as a result of sill emplacement and represent a unique case study to better understand the effect of magmatic intrusions on the general burial diagenesis of siliciclastic sediments. Sills develop contact metamorphic aureoles by conduction as presented in many earlier studies. However, there is significant impact of localized hydrothermal circulation systems affecting reservoir sediments at considerable distance from the sill intrusions. Dolerite sill intrusions in the studied area are of limited vertical extent(~12 m thick), but created localized hydrothermal convection cells affecting sediments at considerable distance(more than five times the thickness of the sill)from the intrusions. We present evidence that the sedimentary sequence can be divided into two units:(1) the bulk poorly lithified sediment with a maximum burial temperature much lower than 60-70 ℃,and(2) thinner intervals outside the contact zone that have experienced hydrothermal temperatures(around 140 ℃). The main diagenetic alteration associated with normal burial diagenesis is minor mechanical plastic deformation of ductile grains such as mica. Mineral grain contacts show no evidence of pressure dissolution and the vitrinite reflectance suggests a maximum temperature of ~40 ℃. Contrary to this, part of the sediment, preferentially along calcite cemented flow baffles, show evidence of hydrothermal alteration. These hydrothermally altered sediment sections are characterized by recrystallized carbonate cemented intervals. Further, the hydrothermal solutions have resulted in localized sericitization(illitization) of feldspars, albitization of both K-feldspar and plagioclase and the formation of fibrous illite nucleated on kaolinite. These observations suggest hydrothermal alteration at T> 120-140 ℃ at distances considerably further away than expected from sill heat dissipation by conduction only, which commonly affect sediments about twice the thickness of the sill intrusion. We propose that carbonate-cemented sections acted as flow baffles already during the hydrothermal fluid mobility and controlled the migration pathways of the buoyant hot fluids. Significant hydrothermally induced diagenetic alterations affecting the porosity and hence reservoir quality was not noted in the noncarbonate-cemented reservoir intervals.