期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Fuzzy Difference Equations in Diagnoses of Glaucoma from Retinal Images Using Deep Learning
1
作者 D.Dorathy Prema Kavitha L.Francis Raj +3 位作者 Sandeep Kautish Abdulaziz S.Almazyad Karam M.Sallam Ali Wagdy Mohamed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期801-816,共16页
The intuitive fuzzy set has found important application in decision-making and machine learning.To enrich and utilize the intuitive fuzzy set,this study designed and developed a deep neural network-based glaucoma eye ... The intuitive fuzzy set has found important application in decision-making and machine learning.To enrich and utilize the intuitive fuzzy set,this study designed and developed a deep neural network-based glaucoma eye detection using fuzzy difference equations in the domain where the retinal images converge.Retinal image detections are categorized as normal eye recognition,suspected glaucomatous eye recognition,and glaucomatous eye recognition.Fuzzy degrees associated with weighted values are calculated to determine the level of concentration between the fuzzy partition and the retinal images.The proposed model was used to diagnose glaucoma using retinal images and involved utilizing the Convolutional Neural Network(CNN)and deep learning to identify the fuzzy weighted regularization between images.This methodology was used to clarify the input images and make them adequate for the process of glaucoma detection.The objective of this study was to propose a novel approach to the early diagnosis of glaucoma using the Fuzzy Expert System(FES)and Fuzzy differential equation(FDE).The intensities of the different regions in the images and their respective peak levels were determined.Once the peak regions were identified,the recurrence relationships among those peaks were then measured.Image partitioning was done due to varying degrees of similar and dissimilar concentrations in the image.Similar and dissimilar concentration levels and spatial frequency generated a threshold image from the combined fuzzy matrix and FDE.This distinguished between a normal and abnormal eye condition,thus detecting patients with glaucomatous eyes. 展开更多
关键词 Convolutional Neural Network(CNN) glaucomatous eyes fuzzy difference equation intuitive fuzzy sets image segmentation retinal images
下载PDF
Image Retrieval Approach Based on Intuitive Fuzzy Set Combined with Genetic Algorithm
2
作者 王潇茵 徐卫华 胡昌振 《Journal of Beijing Institute of Technology》 EI CAS 2009年第1期60-64,共5页
Aiming at shortcomings of traditional image retrieval systems, a new image retrieval approach based on color features of image combining intuitive fuzzy theory with genetic algorithm is proposed. Each image is segment... Aiming at shortcomings of traditional image retrieval systems, a new image retrieval approach based on color features of image combining intuitive fuzzy theory with genetic algorithm is proposed. Each image is segmented into a constant number of sub-images in vertical direction. Color features are extracted from every sub-image to get chromosome coding. It is considered that fuzzy membership and intuitive fuzzy hesitancy degree of every pixel's color in image are associated to all the color histogram bins. Certain feature, fuzzy feature and intuitive fuzzy feature of colors in an image, are used together to describe the content of image. Efficient combinations of sub-image are selected according to operation of selecting, crossing and variation. Retrieval results are obtained from image matching based on these color feature combinations of sub-images. Tests show that this approach can improve the accuracy of image retrieval in the case of not decreasing the speed of image retrieval. Its mean precision is above 80 %. 展开更多
关键词 intuitive fuzzy genetic algorithm color histogram image retrieval
下载PDF
Multi-Topology Hierarchical Collaborative Hybrid Particle Swarm Optimization Algorithm for WSN 被引量:1
3
作者 Yi Wang Kanqi Wang +2 位作者 Maosheng Zhang Hongzhi Zheng Hui Zhang 《China Communications》 SCIE CSCD 2023年第8期254-275,共22页
Wireless sensor networks(WSN)are widely used in many situations,but the disordered and random deployment mode will waste a lot of sensor resources.This paper proposes a multi-topology hierarchical collaborative partic... Wireless sensor networks(WSN)are widely used in many situations,but the disordered and random deployment mode will waste a lot of sensor resources.This paper proposes a multi-topology hierarchical collaborative particle swarm optimization(MHCHPSO)to optimize sensor deployment location and improve the coverage of WSN.MHCHPSO divides the population into three types topology:diversity topology for global exploration,fast convergence topology for local development,and collaboration topology for exploration and development.All topologies are optimized in parallel to overcome the precocious convergence of PSO.This paper compares with various heuristic algorithms at CEC 2013,CEC 2015,and CEC 2017.The experimental results show that MHCHPSO outperforms the comparison algorithms.In addition,MHCHPSO is applied to the WSN localization optimization,and the experimental results confirm the optimization ability of MHCHPSO in practical engineering problems. 展开更多
关键词 particle swarm optimizer levy flight multi-topology hierarchical collaborative framework lamarckian learning intuitive fuzzy entropy wireless sensor network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部